Not quite in Rindler, partly
A general Lorentz boost covered in HUB, p. 157 L6:1
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simply 6x' for boost in x-direction

nsider tin neral direction:
Consider a boos a general directio /7 take x component in¢ dir.

The time component must change as X —-X( X - \5 x) for @ = ‘L

The components orthogonal to the direction of motion don't change
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and the components parallel to the direction of motion change as
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But this is true for any contravatiant 4-vector => it is true for the 4-momentum!
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_ . L6:2
Invariance of the metric

° (Not in Rindler)
let X = ' denote a 4-vector
.
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This shouldn't be a surprise, we have already seen that a Lorentz boost as a tensor
leaves (x )* invariant. => g special!



General Lorentz transformations z‘:lUg) 146-152 L6:3

It makes sense to ask what is the most general linear transformation that leaves the
metric invariant. In fact it's easy to guess the answer:

1) Lorentz boosts in any direction (Clearly x-direction is not special)

=> 3 degrees of freedom

2) Spatial rotations, we know from linear algebra:
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(We here use passive rotations,
i.e., we rotate the coordinates,
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and again we may as well rotate in any other plane => 3 degrees of freedom.
3) Space inversion X —> —X

=> Discrete symmetry => no continuous degree of freedom
4) Time reversal £ - ~t

=> Discrete symmetry => no continuous degree of freedom

The set of all transformations above is referred to as the Lorentz transformations, or

the Lorentz group. This set of transformations is very important as it leaves the laws

of physics invariant. Observers related by Lorentz transformations may disagree on

numerical values, but they agree on the form of physical laws.

A group is a well-defined mathematical concept which is very important in theoretical Def of group:

physics, but it's not part of this course. The physically essential properties are that Leta,b,c€ G
for each transformation there is an inverse transformation in the group and that

. PR cabe G & b
two transformations after each other also correspond to a transformation in the

group. First boosting in x-direction, then in y-direction is the same as first boosting « bo 3a'e g s.t.ala=
in x-direction (with some larger boost) and then rotating by some angle, so it's not s
surprising that boosts and rotations form a "group". c@be=alee) fPane

* there is an identity
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We search all transformations of form 3 = /\Tg A L6:4
that leave g invariant. (We have proved that this is true for boosts.)
Require this for general Lorentz transformations and see what we get:
D det (Af'j/l Y=det (g) = -]
1 Jek (ABJrdet (A) det(®) (no phase)
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Transformations with

¢ Jc't(/\ ) =| are called proper. Rotations and boosts are proper.

* de 't(/\ ) =~| are called improper. They involve space inversion or time
reflection.

From now on we will concern ourselves only with proper Lorentz transformations.
=> we are interested in matrices with de 't(/\ ) = |
One can argue that these matrices can be generated by some matrix L with

T(L ) =0 , meaning that
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(L6:5)
To see this, assume that L can be diagonalized by some matrix O:

-1 (less important
oLO = D for some diagonal matrix D for course)

But then we may rewrite the diagonalized version of N
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Now we have:  det (A) = det (O o"/\)
ML T det (07N 0)

= det(exp (D) )
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So, if we want det (/\) = | L hasto be traceless!
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L6:6
Using Taylor expansion one can prove

.
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Lﬂ is an antisymmetric matrix. The most general form of L is then:
(for proper Lorentz transformations)
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The matrices Jtrjz. )33 generate rotations and KUK,_!Qs generate boosts.



L6:7
To see this consider for example a boost in the x-direction i.e.
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This we recognize as a boost in the x-direction!

21N = cosh(vl\ “sinhn)
..s'mhuf\) cos‘n(v‘\

The parameter r\ is nothing but the rapidity!

By similar calculations it is easy to show thatJr; J+ , d4 indeed generate rotations.

For example, a rotation in the xy-plane using the parameter «s gives

L=¢+w [0 000 :) A =1 sign in HUB p.153
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Comparing the above expressions for A we see that rapidities play the same

role for boosts as angles do for rotations. They mix a spatial direction

with time instead of mixing 2 spatial directions.



L6:8
Ex: Tensor transformation for E- and B-fields.

We have seen that the electric and magnetic fields are part of an

antisymmetric rank (ol)- tensor:
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Consider constant electric and magnetic fields and calculate how they

are transformed in another system.

We may consider a boost in x-direction
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The electric field parallel to the direction of the boost doesn't change!
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B-field parallel to boost doesn't change!
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For the electric field orthogonal to the boost, the B-fields mix in!
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For B-fields orthogonal to the direction of boost, the E-field mix in.

Warning: If E and B-fields depend on position we also have to transform the

position to evaluate the fields in the right point, and if we need derivatives of

the fields we need to take space contraction and time dilation into account.



