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Abstract— Patients with suspicion of acute coronary syn-
drome (ACS) are difficult to diagnose and they belong
to a very heterogenous group of patients. Some require
immediate treatment while others, with only minor dis-
orders, may be sent home. Detecting ACS patients using
a machine learning approach would be advantageous in
many situations.
This study is based on patients with chest pain attending
the emergency department of Lund University Hospital.
A total of 915 cases were incorporated of which 190
were diagnosed as ACS and 725 as non ACS. We have
developed classifiers using neural network ensembles that
can provide a prediction of ACS for patients with chest pain
at an emergency department. We compared two different
ensemble strategies, Bagging and K-fold cross splitting. The
obtained results were also compared with the results of a
standard multiple logistic regression model.
Our results show that it is possible to construct a machine
learning tool that can predict the presence of ACS among
patients with chest pain at a ROC area of 77.8%, corre-
sponding to a level of 40% specificity and 95% sensitivity.
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INTRODUCTION

Patients who come to emergency departments with sus-
picion of infarction or unstable angina pectoris (acute
coronary syndrome (ACS)) are common. This group
of patients represent a very heterogeneous group, some
have a severe ischemic heart disease that, without treat-
ment, may lead to serious complications. Others have
only minor disorders and may, without any risk, be sent
home. It is important to be able to identify patients at the
emergency department that have a need for immediate
treatment.

A number of methods have been developed to support
the physicians in their decision making regarding pa-
tients presenting the emergency department with chest
pain. Goldman et al. [1] developed a model to estimate
the relative risk of major cardiac events within 72
hours after arrival at the emergency department. The
independent variables used included age, gender and
electrocardiographic (ECG) findings, all available at
presentation. This model have the potential to be used
at emergency departments to decide a suitable level of

patient treatment, ultimately being able to reduce the
number of intensive care admissions.

There are also a number of approaches that have been
developed to predict the presence of acute myocardial
infarction based on a full range of clinical data Baxt
[2], Baxt et al. [3], Hollander et al. [4] and data limited
to the 12-lead ECG only Hedén et al. [5], Ohlsson
et al. [6]. Many of these methods used artificial neural
networks as the classification tool. The performance
is usually good compared to interpretation made by
experienced physicians. An example of ACS prediction
can be found in Xuea et al. [7] where a hybrid machine
learning approach was used, combining neural networks
and decision trees.

Artificial neural networks (ANN) represents one ma-
chine learning tool that have turned out to be useful
for complex pattern recognition problems. ANN is also
widely used for medical applications (see e.g. Lisboa
et al. [8]). Ensemble learning for ANN is standard
procedure to increase the generalization performance by
combining several individual networks trained on the
same task. The ensemble approach has been justified
both theoretically Hansen and Salamon [9], Krogh and
Vedelsby [10] and empirically Opitz and Maclin [11].
Combining the outputs is clearly only relevant when they
disagree on some or several of the inputs. This insight
was formalized by Krogh et al. [10], who showed that
the squared error of the ensemble when predicting a
single target is equal to the average squared error of
the individual networks, minus the diversity defined as
the variance of the individual network outputs. Thus,
to reduce the ensemble error, one tries to increase the
diversity (called “ambiguity” in [10]) without increasing
the individual network errors too much. The simplest
method for creating diverse ensemble members is to
train each network using randomly initialized weights.
A more elaborate approach is to train the different
networks on different subsets of the training set. An
example is Bagging Breiman [12] where each training
set is created by resampling (with replacement) the
original one, with uniform probability.

In this study we will look into the idea of using K-
fold cross splitting when training the ANN ensemble.



This approach is similar to the K-fold cross validation
method that can be used to estimate the generalization
performance. We will compare this approach with ANN
Bagging and standard multiple logistic regression. Our
main focus is to develop a classification method that can
predict ACS as good as possible on our study population.

MATERIALS AND METHODS

Study Population

This study is based on patients with chest pain at-
tending the emergency department of Lund University
Hospital, Sweden, from July 1 to November 20 1997.
One thousand consecutive visits were recorded where
813 patients had only one visit and 68 patients had
two or more visits Hansen et al. [13]. For patients
with two consecutive visits within 20 days one of these
visits were removed (randomly), in order to have as
independent data as possible. This reduced the dataset
to 942 visits. Furthermore, 27 visits where removed
because of missing values. The final dataset consisted
of 915 cases, where 190 were diagnosed with ACS and
725 cases with no ACS. Table I shows the independent
variables used in this study. The diagnosis of ACS is
defined as one of the following discharge diagnoses
for the patient: acute myocardial infarction and angina
pectoris. The discharge diagnoses were made by the
attending senior ward physicians and also reviewed by
an experienced research nurse and classified according
to the following criteria: acute myocardial infarction
was defined by the WHO criteria Tunstall-Pedoe et al.
[14] where the biochemical criterion was at least one
measurement of CK-MB>10 µg/l or Troponin T>0.1
µg/l. The criteria for unstable angina were (i) together
with (ii) or (iii):

(i) Ischemic symptoms: chest pain >15 min., syncope,
acute heart failure or pulmonary oedema

(ii) Electrocardiogram (ECG) changes: transient or per-
sisting ST segment depression (≥1 mm) and/or
T-wave inversion (≥1 mm) without developing Q
waves or loss of R wave height.

(iii) Biochemical markers: CK-MB 5-10 µg/l or Tro-
ponin T>0.05 µg/l if CK-MB<10 µg/l.

The non ACS cases consists of patients with the diag-
nosis of stable and suspected angina pectoris, together
with the category “other diagnosis”. Out of the 725 non
ACS cases, 380 correspond to discharge diagnoses other
than stable or suspected angina pectoris.

Neural Network Ensembles

We considered neural networks in the form of feed-
forward multilayer perceptrons (MLP) with one hidden
layer and no direct input-output connections. The hidden
unit activation function was the hyperbolic tangents and

TABLE I
CHARACTERISTICS OF THE INDEPENDENT VARIABLES USED TO

TRAIN THE CLASSIFICATION METHODS. THERE ARE 190 CASES

OF ACS AND 725 CASES WITHOUT ACS.

Input variable ACS No ACS
n (%) n (%)

Age 69.8∗(12.9)† 60.9∗(17.9)†

Gender
Male 120 (63) 392 (54)
Female 70 (37) 333 (46)

Symptom duration
0-6 hours 145 (76.3) 381 (52.6)
7-12 hours 21 (11.1) 94 (13.0)
13-24 hours 10 (5.3) 60 (8.3)
> 24 hours 14 (7.4) 190 (26.2)

Chest discomfort at presentation
Yes 127 (66.8) 340 (46.9)
No 63 (33.2) 385 (53.1)

Diabetes
Yes 33 (17.4) 69 (9.5)
No 157 (82.6) 656 (90.5)

Diastolic blood pressure 84.5∗(15.1)† 83.4∗(12.3)†

Congestive heart failure
Yes 29 (15.3) 101 (13.9)
No 161 (84.7) 624 (86.1)

Angina pectoris
Yes, ≤ 1 month 7 (3.8) 4 (0.6)
Yes, > 1 month 82 (43.2) 236 (32.6)
No 101 (53.2) 485 (66.9)

Previous myocardial infarction
Yes, ≤ 6 months 18 (9.5) 27 (3.7)
Yes, > 6 months 54 (28.4) 148 (20.4)
No 118 (62.1) 550 (75.9)

Previous PTCA
Yes 6 (3.2) 38 (5.2)
No 184 (84.7) 687 (94.8)

Previous CABG
Yes 14 (7.4) 70 (9.7)
No 176 (92.6) 655 (90.3

∗ Mean.
† Standard deviation.

the output activation function was the standard logistic
function. We used the standard cross-entropy error func-
tion for two classes. In addition we introduced a weight
elimination term Hanson and Pratt [15], controlled by a
tunable parameter λ, to possibly regularize the network.

Ereg = λ
∑

c

ω2
i

1 + ω2
i

(1)

The sum for network runs over the weights of the
connections i between the layers, but not over the
thresholds. The total error is just the sum of the cross-
entropy part and Ereg for the case when using regularized
MLPs. The minimization of the error function was
accomplished using the quasi-Newton variable metric



method (see e.g. Bishop [16]).

Two methods were used to construct an ensemble of
MLPs, Bagging and K-fold cross splitting. In Bagging
we start with a given training set and then create new
training sets by resampling, with replacement, the orig-
inal one. Thus, the Bagging ensemble contains MLPs
trained on bootstrap samples of the original training set.
The ensemble output yens is simply taken as the mean
of the individual ensemble members, i.e.

yens =
1

C

C∑

i=1

yi , (2)

where yi is the output of the i:th MLP in the ensemble
and C is the Bagging ensemble size.

Another approach to construct different, but yet similar,
training sets for the ensemble members is to split the
original training set into K disjoint sets of approximately
equal size. From these K parts we construct K MLPs
by removing part k, (k = 1, ..,K), when training the
k:th MLP. This results in K MLPs trained on different
(although similar) parts of the full training set. Repeating
this procedure N times results in an ensemble of NxK
MLPs. As for Bagging the ensemble output for the
NxK-fold cross splitting ensemble is computed as the
mean of the NxK MLP outputs (see Eq. (2)). Clearly,
for small values of K the training sets differs more
compared to large values of K where only a small part
(1/K) of the original training set is removed. For the
efficiency of the ensemble we therefore only consider
small values of K (e.g. 2 ≤ K ≤ 10). This approach to
ensemble creation can be found in the work of Krogh
et al. [10], but used in a different content.

The ensemble size, C for Bagging and KxN for K-
fold cross splitting, influences the performance of the
ensemble method compared to single MLP classifiers. In
this study we will use ensemble sizes up to 50, which
is found to be enough in numerical studies (see e.g.
[11],West et al. [17]).

Ensemble Model Selection

It is important that the ensemble members disagree
in their predictions, if anything is to be gained by
combining them. This fact becomes apparent when
decomposing the mean square ensemble error into the
average squared error of the individual networks minus
the average diversity, defined as variance of the individ-
ual network outputs (see e.g. [10]). This suggests that
over-fitting of the individual ensemble members might
be advantageous since this will most likely increase the
diversity. Still, we must be able to do model selection
for our ensemble classifiers to determine an optimal
architecture and possibly a regularization parameter for
the weight elimination error term, Eq. (1). For the
Bagging ensemble one approach would be to use the

0.632 bootstrap estimator Efron [18]. Let θ denote our
measure of performance. The 0.632 bootstrap estimator
θ̂B is then defined as,

θ̂B =
1

C

C∑

i=1

0.632θ̂i + 0.368θ̂ai , (3)

where θ̂i is computed from the remaining instances of
the original data set not present in bootstrap training set i
and θ̂ai is the performance computed on the i:th training
set (often called the apparent performance). We will use
the θ̂B estimator in order to do model selection for the
Bagging ensemble.

For the K-fold cross splitting ensemble the first approach
would be to compute an estimate of θ using the parts of
the K-fold split that was left out during training, exactly
the way one would do in K-fold cross validation. How-
ever, this is not optimal from the ensemble point of view,
since this estimate of the generalization performance is
not based on any ensemble average. Thus to validate the
K-fold cross splitting ensemble we need to compute an
estimate of θ based on a validation ensemble. We can
do this in a convenient way using the fact that we have
a disjoint split of the training set into K parts. Training
an ensemble for a given K, assuming N = 1, gives
rise to K different validation sets and the corresponding
sets of MLP validation outputs. These K parts can be
concatenated to a full validation set, identical in size
to the original training set. Repeating this procedure N
times results in N such full validation sets. It is now
straight forward to average these lists to produce the
final validation ensemble from which we can compute
the estimate θ̂CS , the K-fold splitting ensemble estimate
of the generalization performance.

The model selection performed in this study, both the
Bagging and the K-fold cross splitting ensemble, is
based on θ̂B and θ̂CS, respectively.

Multiple logistic regression

To compare against a standard statistical classification
method the probability of ACS was also predicted using
multiple logistic regression Hosmer and Lemeshow [19].
In this analysis all independent variables except age were
entered in the regression models as categorical variables
as shown in table I. The variable diastolic blood pressure
were categorized into two categories, either < 70 mmHg
or ≥ 70 mmHg, as opposed to the ANN model where
it was used as a numerical value. In this model we also
allowed for synergetic effects with age, implemented as
cross-product terms, for the following variables: gender,
chest discomfort at presentation, symptom duration and
previous myocardial infarction.



TABLE II
THE TEST PERFORMANCE OBTAINED FROM THE DIFFERENT

METHODS. THE NUMBERS ARE MEDIANS (2.5, 97.5 PERCENTILES)
OVER THE 100 TEST SETS DEFINED BY THE CROSS TESTING

PROCEDURE.

Method Test Roc Area (%)
Single ANN 75.0 (62.0, 87.5)
ANN Ensemble (CS N = 25, K = 2) 77.3 (64.9, 86.7)
ANN Ensemble (Bagging, C = 50) 78.2 (65.8, 88.5)
Multiple Logistic Regression 77.6 (65.4, 88.0)

Performance estimation

All classification models in this study provides an es-
timate of the posterior probability for ACS given a
data record. It is therefore straight forward to construct
receiver operating characteristics (ROC) curves for all
methods. As a measure of performance we will use
the area under the ROC curve. This area has the usual
interpretation that a randomly chosen patient with ACS
has a larger outcome probability than a randomly chosen
patient without ACS (see e.g. Hanley and McNeil [20]).

To estimate the generalization performance of the clas-
sification methods we used a 10-fold cross testing pro-
cedure, repeated 10 times, resulting in 100 test sets on
which the area under the ROC curve was calculated. The
procedure is similar to the cross validation method used
for model selection and is accomplished by dividing
the data set into 10 parts of (approximately) equal
size. A classification model is constructed on all parts
except one, which is used as the independent test set.
The average of the 100 ROC areas is used as the
test performance for a given classification method. It
is important to stress that a given test set was never part
of the model selection or model construction procedure.
The same 10x10-fold split was used for all methods
tested, which allows for a statistical comparison of the
performances using e.g. a paired t-test. Strictly, it is
only within each 10-fold split we, by definition, have
independent data. The p-value calculations are therefore
applied for each of the 10 splittings. The median p-value
is used throughout this paper.

RESULTS AND DISCUSSION

The best results obtained for the different classification
methods are summarized in Table II. Here we also
included results from a classifier based on a single MLP.
The model selection carried out for this single network
was based on 10-fold cross validation, repeated 5 times.
As expected there is an advantage of using an ensemble
of networks compared to the single MLP classifier,
where p-values for the differences are p=0.03 and p=0.1
for Bagging and K-fold cross splitting, respectively.
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Fig. 1. The ROC curve for the Bagging ensemble. This curve is
based on the complete data set obtained from one of the 10 cross
testing splits. The area under this curve is close to the median of
78.2%.

Comparing with the multiple logistic regression we can
conclude that this method works very well. There is
only a small increase in performance in favor of the
Bagging ensemble (p=0.7). It should be noted that the
logistic regression method is not linear since it contains
cross terms as described earlier. Figure 1 shows the ROC
curve, for the Bagging ensemble, of the full test set,
corresponding to one of the test splits that obtained a
ROC area closest to the median (78.2%).

Although the K-fold cross splitting ensemble did not
obtain the best test result it is interesting to compare
the results for different values of K and N , both
for unregularized and regularized MLPs. For the K-
fold cross splitting ensemble we defined an estimate
of the generalization performance based on a validation
ensemble. Is is interesting to see how well this estimate
correlates to the test performance given by the 10x10-
fold cross testing procedure. Table III shows the results
obtained for different combinations of K and N . For
the unregularized ensemble the number of hidden nodes
in the MLPs varied from 3-5, based on the validation
ensemble results. To allow for a comparison between
the validation result and the test result, the size of
the validation ensemble was increased as to match the
size of the ensemble used for the testing (KxN ). As
expected, the results from combinations where the KxN
is small did not perform as well as for larger values
of KxN . The 2x1 ensemble resulted in a validation
(test) ROC area of 69.5% (73.1%), compared to the best
result of 75.7% (76.8%) obtained by the 2x25 ensemble.
The test difference is statistically significant (p=0.02).
Comparing the three different settings all having a total
ensemble size of 50 (2x25, 5x10, 10x5) we find a small
increase in performance for smaller values of K.

Turning to the regularized K-fold cross testing ensemble



TABLE III
THE VALIDATION AND TEST PERFORMANCE (ROC AREA) FOR

BOTH REGULARIZED AND UNREGULARIZED K-FOLD CROSS

SPLITTING ENSEMBLES. THE NUMBERS ARE MEDIANS (2.5, 97.5
PERCENTILES) OVER THE 100 TEST SETS DEFINED BY THE CROSS

TESTING PROCEDURE.

Unregularized Ensemble
K N Validation Test

2 1 71.5 (68.3, 74.6) 73.1 (55.5, 83.2)
2 5 74.6 (72.2, 76.6) 74.8 (64.1, 84.4)
2 10 76.0 (74.2, 77.7) 76.3 (63.3, 86.3)
2 25 76.5 (74.2, 78.0) 76.8 (61.0, 88.1)
5 1 73.8 (70.9, 76.0) 74.6 (60.1, 85.1)
5 5 75.1 (73.2, 76.7) 76.0 (63.4, 86.3)
5 10 76.1 (74.3, 77.5) 76.6 (61.4, 89.3)

10 1 74.0 (71.5, 76.7) 74.5 (62.9, 85.9)
10 5 75.5 (73.1, 77.4) 76.1 (64.3, 85.4)

Regularized Ensemble
K N Validation Test
2 1 74.1 (71.0, 76.8) 75.9 (59.3, 86.7)
2 5 76.1 (74.3, 77.8) 76.4 (64.8, 87.8)
2 10 76.2 (74.8, 77.8) 77.2 (64.0, 88.1)
2 25 76.7 (75.2, 77.9) 77.3 (64.9, 86.7)
5 1 75.2 (71.1, 77.1) 76.1 (64.4, 85.4)
5 5 76.2 (74.7, 78.0) 77.2 (64.6, 87.4)
5 10 76.3 (74.8, 77.8) 77.1 (64.8, 86.8)

10 1 75.9 (74.0, 77.6) 76.6 (64.4, 86.5)
10 5 76.2 (74.7, 77.8) 76.3 (63.3, 86.5)

(bottom part of Table III) we observe a consistent
increase of the performance when comparing the me-
dian ROC areas for the same (K,N ). None of these
differences are however statistically significant. The best
result was obtained for the (2x25) regularized ensemble
with median test ROC area of 77.3%. Again we notice an
increase using large enembles with small K. Regardless
of whether we use regularization or not, the estimate of
the generalization performance as given by the validation
ensemble is only slightly pessimistic compared to the
“true” generalization performance.

Table IV shows the result for the Bagging ensemble for
different values of the ensemble size C, both for unreg-
ularized and regularized MLPs. Here we also observe a
difference between regularizing or not. For the C=50 en-
semble we have an increase of the test performance from
76.6% to 78.2% (p=0.3). Our approach to validate the
Bagging ensemble using the 0.632 bootstrap rule (Eq. 3)
results in too optimistic estimates of the generalization
performance. However, for our medical prediction task,
the Bagging ensemble receives the best test set result
compared to both the K-fold splitting ensemble and
logistic regression, although not significant.

In conclusion we find that it is possible to construct
a machine learning tool that can predict the presence

TABLE IV
THE VALIDATION AND TEST PERFORMANCE (ROC AREA) FOR

BOTH REGULARIZED AND UNREGULARIZED BAGGING ENSEMBLES.
THE NUMBERS ARE MEDIANS (2.5, 97.5 PERCENTILES) OVER THE

100 TEST SETS DEFINED BY THE CROSS TESTING PROCEDURE.

Unregularized Ensemble
C Validation Test
2 78.3 (74.1, 81.7) 71.8 (56.9, 81.3)
5 78.1 (76.1, 80.6) 73.9 (62.2, 86.0)

10 78.2 (76.4, 79.9) 76.0 (61.9, 85.7)
25 78.1 (76.9, 79.5) 75.6 (65.2, 87.3)
50 78.1 (76.8, 79.4) 76.6 (65.1, 87.0)

Regularized Ensemble
C Validation Test

2 78.9 (75.7, 81.6) 71.4 (62.0, 82.1)
5 79.2 (76.7, 81.0) 75.3 (63.1, 86.0)

10 79.0 (77.6, 80.5) 76.9 (64.0, 86.6)
25 78.9 (77.7, 80.2) 77.6 (64.8, 87.3)
50 79.0 (77.9, 80.5) 78.2 (65.8, 88.5)

of ACS among patients with chest pain at a ROC area
level of about 78%. This result is limited to our study
population and to our choice of input variables. We find
the K-fold splitting ensemble technique interesting since
it provides an estimate of the generalization performance
that is in good agreement of the test performance.

From a medical point of view the evaluation of patients
with suspected ACS in the emergency department is
very important. Since the ACS diagnosis is a difficult
one, there is a certain level of overadmission of patients.
In a study of a Swedish emergency department it was
found that almost 3/4 of the patients with suspected ACS
were incorrectly hospitalized Ekelund et al. [21]. On the
other hand, patients are also incorrectly sent home from
the emergency department, where a 5% level has been
reported Lee et al. [22], Pope et al. [23]. It is therefore
important to develop medical decision support for the
prediction of ACS in the emergency department. The
machine learning approach used in this study allows
for a sensitivity and a specificity of about 95% and
40% respectively. There still is a lot to be accomplished
before one can apply our method in a clinical setting,
but the level of accuracy is promising.
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