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INTRODUCTIONAn Arti�ial Neural Network (ANN) is a powerful tool for lassi�ation problems in themedial �eld. When used in the medial domain it is often important that the lassi�ationtool is able to explain its reasoning. For lassi�ation models based on ANN this an bediÆult beause of their non-linearity. However, in order to reah an aeptane by theusers it is important that one an understand its funtioning and ultimately learn from itssuess. One approah to learn from an ANN is found in [1℄, where a ase-based explanationmethod is developed that explains the reasoning behind the network by showing a set ofsimilar ases.The approah taken in this paper an be desribed as a ase-based sensitivity analysismethod, whih aims at �nding the important inputs for eah ase (e.g. patient). Thenotion of importane should be read as ausal importane sine the method will monitorhanges in neural network response when manipulating the inputs. We are not looking athanges in the generalization error when removing inputs (preditive importane), whihoften requires retraining of the ANN. The method presented here operates on a trainedneural network ommittee used for lassi�ation problems.The methodology is illustrated with the real-world problem of identifying patients su�eringfrom aute myoardial infartion in the presene of left bundle branh blok. The onlysoure of information is the 12-lead eletroardiogram (ECG) that, after pre-proessing, isused as input to the neural network lassi�er, whih lassi�es the ECG into either autemyoardial infartion or not. The objetive for the ase-based sensitivity analysis, for thispartiular problem, is to be able to answer questions like:� What ECG measurements were important when making the lassi�ation?� The network ommittee made an erroneous lassi�ation. How an one hange theECG in order to obtain a orret lassi�ation?� What measurements an be omitted for this ECG without hanging the output fromthe network ommittee?The methodology is developed in the next setion, where the neural network ommitteeis de�ned and followed by a desription of the ase-based sensitivity analysis. The setionis ended by a brief review of the mean �eld annealing method. The experiment setiondesribes the medial lassi�ation problem on whih the method is tested; followed bythe result setion. The paper is ended with a onlusion.1



METHODSArti�ial Neural NetworksThe starting point is a trained neural network ommittee with P members. The outputfrom the ommittee is alulated as the mean of its members. Let x = (x1; x2; :::; xN) bea given input vetor, the ommittee output yom(x) is then given by,yom(x) = 1P PXk=1 yk(x) (1)where yk(x) is the output from the k:th neural network in the ommittee.We will now study the e�et of hanging the input by an amount dx, whih results in anew ommittee output yom(x+dx). The hange of the i:th omponent of the input vetordxi, an only take one out of M possible values and is expressed asdxi = MXl=1 sil�il (2)where we have introdued a binary deision variable sil, de�ned aording tosil = ( 1 if xi ! xi + �il0 otherwise (3)Obviously, the variables must ful�ll the following normalization (Potts) onditions:MXl=1 sil = 1 (i = 1; :::; N) (4)By this onstrution, the input vetor x an be hanged into one out of possible MN newinput vetors.If we assume a feed-forward neural network with one hidden layer, the ommittee outputfor the modi�ed input vetor x+ dx is given by,yom(x+ dx) = 1P PXk=1 yk(x+ dx) (5)= 1P Xk �o0�Xj !(k)j �h  Xi ~!(k)ij "xi +Xl sil�il#!1A (6)where �o(�) and �h(�) are the ativation funtions for the output and the hidden layer,respetively. The input to hidden weights for the k:th network in the ommittee are2



denoted by ~!(k)ij and the orresponding hidden to output weights are !(k)j (see Fig 1). Fora �xed set of weights and input vetor hanges (�il), yom an be regarded as a funtion ofthe deision variables sil. Next we will formulate two di�erent ost funtions that are tobe minimized with respet to sil.
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x1 x2 xNFigure 1: The neural network arhiteture used in this paper.The Cost FuntionsDepending on the objetive with the ase-based sensitivity analysis two di�erent ostfuntions will be formulated. If we want to �nd unimportant input variables for a partiularase, the input vetor hanges (�il) an be de�ned as:�i0 = �xi (7)�i1 = 0 (8)with M = 2. This implies that eah input variable an be either "o� or on". A suitableost funtion to minimize is therefore,E1(S) = (yom(x+ dx)� yom(x))2 + � NXi=1 si0 �No�!2 (9)where S denotes the matrix with elements sil. The �rst term minimizes the di�erenebetween the modi�ed and the original ommittee output. The seond term is zero when3



the number of input variables in the "o�" state is No�. The set of variables fsilg minimizingthis ost funtion determines theNo� input variables that, when deleted, makes the smallesthange of the ommittee output. Sine this is a ase-based analysis one has to minimizethis ost funtion for eah ase.On the other hand if the objetive is to �nd a set of input variables that are important fora partiular ase, another ost funtion must be minimized. Importane is now measuredas ausal importane, whih means that we want to identify the input variables that, whenhanged, has the largest e�et on the ommittee output. The ost funtion appropriatefor this is, E2(S) = � (yom(x+ dx)� yom(x))2 + � NXi=1 si0 � (N �Nmod)!2 (10)The �rst term now maximizes the hange aused by modifying the input x! x+dx. Theinput vetor hanges are de�ned in order to over a small neighborhood around x,�il = 2lM Æixi (l = 1; :::;M=2) (11)�il = �2(l �M=2)M Æixi (l = M=2 + 1; :::;M) (12)�i0 = 0 (13)with appropriate values for Æi. M should be large enough in order to avoid e�ets of thedisretization. The seond term in the ost funtion (Eq. (10)) fores the solutions to haveNmod modi�ed input variables.When minimizing either of the ost funtions E1 or E2 the solutions found must onform tothe Potts onditions of Eq. (4). Next we will see how the method of mean �eld annealingan be used to eÆiently �nd good minima to the ost funtions.The Mean Field Annealing MethodSine the ase-based sensitivity analysis is formulated as a ombinatorial optimizationproblem we need an eÆient proedure for minimizing E1;2 with respet to the binary silvariables and subjet to the onstraints of Eq. (4). This is a non-trivial minimizationproblem. Using some loal updating rule will most often yield a loal minimum lose tothe starting point, with poor solutions as a result. Simulated annealing (SA) [2℄ is oneway of esaping from loal minima sine it allows for uphill moves in E. In SA a sequeneof on�gurations is generated aording to a stohasti algorithm, suh as to emulate theprobability distribution P (S) = e�E(S)=TPfS0g e�E(S0)=T (14)
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where the sum runs over all possible on�gurations S 0. The parameter T (temperature)ats as a noise parameter. For large T the system will utuate heavily sine P (S) is veryat. This implies that the generated on�gurations ontain mostly poor and infeasiblesolutions. On the other hand, for a small T , P (S) will be narrow, and the sequene ofon�gurations will be strongly dependent upon the initial one and ontain on�gurationsonly from a small neighborhood around the initial starting point.In SA one generates on�gurations while lowering T (annealing), thereby diminishing therisk of ending up in a suboptimal loal minimum. This is quite CPU-onsuming, sine onehas to generate many on�gurations for eah temperature following a areful annealingshedule (typially Tk = To=(log(1 + k)) for some To) in order to be ertain to �nd theglobal minimum. In the mean �eld annealing (MFA) approah [3℄ the ostly stohasti SAis approximated by a deterministi proess. MFA also ontains an annealing proedure.The original binary variables sil are replaed by ontinuous mean �eld variables vil 2 [0; 1℄,with a dynamis given by iteratively solving of the so-alled mean �eld equations for eahT .An additional advantage of the MFA approah is that the ontinuous mean �eld variablesan evolve in a spae not aessible to the original binary variables. The mean �eldequations suitable for updating our mean �eld variables are:vil = exp(uil=T )PMk=1 exp(uik=T ) (15)where the variables uil are given by, uil = �E�vil (16)Usually, in order to improve onvergene, the derivatives in Eq. (16) are replaed by �nitedi�erenes (see e.g. [4℄). The algorithmi proedure for minimizing the ost funtion issummarized if Fig. 2:EXPERIMENTSThe ase-based sensitivity analysis method outlined above is applied on a lassi�ationproblem from the medial domain. The task is to detet aute myoardial infartion(AMI) in eletroardiograms (ECGs) with left bundle branh blok (LBBB) [5℄. Earlydiagnosis of AMI is of vital importane. The 12-lead ECG is still the best and mostreadily available devie for investigation of AMI, and sine the presene of (LBBB) makesthe eletroardiographi manifestations of aute myoardial transmural ishemia diÆultto detet, the presene of LBBB is an issue of major diagnosti importane.5



1. Initialize the mean �eld variables lose to the value 1=M(randomly).2. Set the start temperature to a large value (e.g. To = 10).3. Randomly (without replaement) selet one row of the Vmatrix, say row k.4. Update all vkl(l = 1; :::;M) aording to Eq. (15).5. Repeat items 3-4 M times (suh that all rows have beenupdated one).6. Repeat item 5 until no hanges our (de�ned by e.g.1MN Pil jvil � voldil j � 0:01).7. Derease the temperature, T ! �T (e.g. � = 0:95 ).8. Repeat items 3-7 until all vil are lose to 1 or 0.9. Finally, the mean �eld solution is given by the integer limitof vil, i.e. for eah row i (i = 1; :::; N) selet the olumn l�suh that vil� is the largest element for this row. Let sil� = 1and all other sil = 0 for this row.Figure 2: Summary of the mean �eld annealing algorithm.Study PopulationThis study is based on ECGs reorded at the emergeny department of the UniversityHospital in Lund, Sweden from July 1990 to May 1997. The �nal data set onsists of 518ECGs with LBBB on�guration, of whih 120 are reorded on patients with AMI and 398on ontrol patients. The AMI group onsists of 74 ECGs reorded on males and 46 ECGsreorded on females. The ontrol group is omposed of 202 ECGs reorded on males and196 ECGs reorded on females. Fig. 3 shows two ECGs from the study group, where theECG on the right-hand side omes from a patient with a diagnosis of AMI.EletroardiographyThe 12-lead ECGs are reorded by omputerized eletroardiographs (Siemens-Elema AB,Solna, Sweden), with 7 measurements from eah of 5 leads being seleted for furtheranalysis: QRS duration, Q, R, and S amplitudes, and three ST-T measurements (ST-Jamplitude, ST amplitude 3/8 and positive T). The ST amplitude 3/8 was obtained bydividing the interval between ST-J point and the end of the T wave into eight parts ofequal duration. The amplitude at the end of the third intervals was denoted ST amplitude3/8. In total 35 measurements from the ECG are used as inputs to the neural network.6



Figure 3: Example of ECGs with presene of left bundle branh blok. (left) No diagnosis of autemyoardial infartion. (right) With a diagnosis of aute myoardial infartion.Arti�ial Neural NetworksA standard feed-forward, one-hidden-layer neural network arhiteture is used in this study.The input layer omprises 35 nodes, one for eah of the ECG measurements. The hiddenlayer ontains 5 nodes and the output layer onsists of one node, whih enodes the outputas to whether the patient su�ers from AMI or not AMI. A weight elimination term [6℄ isadded to the Kullbak-Liebler error funtion in order to regularize the neural network. Theregularization parameter is set using a 4-fold ross-validation sheme. Finally, a ommitteeof 10 networks is trained using the full training set. The training set onsists of a randomseletion of 478 ECGs, the remaining 40 ECGs are used as test ases for the ase-basedsensitivity analysis.Case-based sensitivity analysisIn order to �nd important measurements for the di�erent ases in the test set we use aost funtion of the seond type E2 (see Eq. (10)). The number of input vetor hangesM is 11 and the maximum deviation Æi for eah input xi is set to, Æi = 0:05xi. Thenumber of modi�ed variables Nmod is 5, whih means that the 5 most inuential inputswill be deteted. We are also looking for inputs that an be deleted and still get the same7



ommittee output, i.e. using a ost funtion of type E1. The parameters used for this andthe previous analysis are summarized in Table 1.Cost funtion M Æi Nmod / No� �E1 2 - No� = 10 � 1:0E2 11 Æi = 0:05xi Nmod = 5 � 2:0Table 1: Parameters used when analyzing the ases in the test set with a ost funtion of type E1 or E2.The value of the � parameter is inreased from the value in the table until a valid solution is found.
1 RESULTSIt is interesting to monitor the development of the mean �eld variables during the mini-mization proess (annealing). Fig. 4 shows suh a set of mean �eld variables for one of thetest ases, during the minimization of E2. At high temperature (left part of the graph)

Figure 4: The development of the mean �eld variables during the minimization of E2 for a ase in the testset.all variables (385) have approximately the value of 1=M . However, as the temperaturedereases, the variables onverge to either one or zero.8



The result of the ase-based sensitivity analysis for some of the test ases is shown in Table2. This table lists the 5 most important input measurements for 2 non-AMI ECGs and2 from ECGs with diagnosis of AMI. Case 1 and 3 got the wrong lassi�ation from thenetwork, while ase 2 and 4 were orretly lassi�ed.Case Network output True lass Important measurements1 0.54 0 Qamp-II, Samp-II, STamp-V2, STamp-V3 , STamp-V42 0.034 0 QRSdur-V4, Samp-I, STamp-I, ST38amp-II, STamp-V23 0.028 1 QRSdur-V2, QRSdur-V3, Samp-II, Samp-V2, T+amp-V24 0.78 1 Qamp-V3, STamp-II, STamp-V2, STamp-V4, T+amp-V4Table 2: The important measurements for 4 ases in the test set, together with the network output andtrue lass belongings.Looking at the other ases in the test set one �nds that the measurements from the ST-Tinterval are usually important, whih is natural for the detetion of AMI.Looking at the results for the minimization of the ost funtion E1, whih aims at �ndingunimportant input variables one an dedue that the measurements QRSdur-II, Qamp-I,Qamp-V4, Ramp-I and Ramp-V4 are not important for the lassi�ation of AMI. This on-lusion is based on an average of the 40 test ases and there are variations between thedi�erent ases, whih makes the ased-based sensitivity analysis useful.CONCLUSIONSWe have developed a ase-based sensitivity analysis method for arti�ial neural networks.It an be used in order to �nd both important and unimportant input variables for eahase presented to the neural network.Although not presented in this paper, the method an be used to �nd the minimal setof hanges for a mislassi�ed ECG, in order to obtain the orret lassi�ation. Thisappliation requires another representation of the ECG that enables a visual inspetion ofthe inferred hange. This an be of great bene�t for the medial dotor when analyzingthe ECG.The ase-based sensitivity analysis presented here is not limited to lassi�ation of ECGs,there is a wide range of problems both within and outside the medial domain, wherease-based sensitivity analysis ould be helpful.9
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