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e (2001)Abstra
t: It is often important to be able to explain the reasoning behind a ma
hinelearning algorithm, su
h as an arti�
ial neural network, espe
ially in the medi
al domain.In this paper we develop a 
ase-based sensitivity analysis method for neural networks.The method uses a trained neural network 
ommittee in order to �nd both important andunimportant input variables for individual 
ases. The sensitivity analysis is formulated as
ombinatorial optimization problem, where the mean �eld annealing method is used as atool for �nding good solutions. The approa
h is tested on a problem from the medi
aldomain; namely the problem of identifying patients su�ering from a
ute myo
ardial in-far
tion in the presen
e of left bundle bran
h blo
k. We feel that the 
ase-based sensitivityanalysis developed here 
an be used to understand the 
omplex fun
tioning of a neuralnetwork and that the method 
an be applied on other problems from the medi
al domain.



INTRODUCTIONAn Arti�
ial Neural Network (ANN) is a powerful tool for 
lassi�
ation problems in themedi
al �eld. When used in the medi
al domain it is often important that the 
lassi�
ationtool is able to explain its reasoning. For 
lassi�
ation models based on ANN this 
an bediÆ
ult be
ause of their non-linearity. However, in order to rea
h an a

eptan
e by theusers it is important that one 
an understand its fun
tioning and ultimately learn from itssu

ess. One approa
h to learn from an ANN is found in [1℄, where a 
ase-based explanationmethod is developed that explains the reasoning behind the network by showing a set ofsimilar 
ases.The approa
h taken in this paper 
an be des
ribed as a 
ase-based sensitivity analysismethod, whi
h aims at �nding the important inputs for ea
h 
ase (e.g. patient). Thenotion of importan
e should be read as 
ausal importan
e sin
e the method will monitor
hanges in neural network response when manipulating the inputs. We are not looking at
hanges in the generalization error when removing inputs (predi
tive importan
e), whi
hoften requires retraining of the ANN. The method presented here operates on a trainedneural network 
ommittee used for 
lassi�
ation problems.The methodology is illustrated with the real-world problem of identifying patients su�eringfrom a
ute myo
ardial infar
tion in the presen
e of left bundle bran
h blo
k. The onlysour
e of information is the 12-lead ele
tro
ardiogram (ECG) that, after pre-pro
essing, isused as input to the neural network 
lassi�er, whi
h 
lassi�es the ECG into either a
utemyo
ardial infar
tion or not. The obje
tive for the 
ase-based sensitivity analysis, for thisparti
ular problem, is to be able to answer questions like:� What ECG measurements were important when making the 
lassi�
ation?� The network 
ommittee made an erroneous 
lassi�
ation. How 
an one 
hange theECG in order to obtain a 
orre
t 
lassi�
ation?� What measurements 
an be omitted for this ECG without 
hanging the output fromthe network 
ommittee?The methodology is developed in the next se
tion, where the neural network 
ommitteeis de�ned and followed by a des
ription of the 
ase-based sensitivity analysis. The se
tionis ended by a brief review of the mean �eld annealing method. The experiment se
tiondes
ribes the medi
al 
lassi�
ation problem on whi
h the method is tested; followed bythe result se
tion. The paper is ended with a 
on
lusion.1



METHODSArti�
ial Neural NetworksThe starting point is a trained neural network 
ommittee with P members. The outputfrom the 
ommittee is 
al
ulated as the mean of its members. Let x = (x1; x2; :::; xN) bea given input ve
tor, the 
ommittee output y
om(x) is then given by,y
om(x) = 1P PXk=1 yk(x) (1)where yk(x) is the output from the k:th neural network in the 
ommittee.We will now study the e�e
t of 
hanging the input by an amount dx, whi
h results in anew 
ommittee output y
om(x+dx). The 
hange of the i:th 
omponent of the input ve
tordxi, 
an only take one out of M possible values and is expressed asdxi = MXl=1 sil�il (2)where we have introdu
ed a binary de
ision variable sil, de�ned a

ording tosil = ( 1 if xi ! xi + �il0 otherwise (3)Obviously, the variables must ful�ll the following normalization (Potts) 
onditions:MXl=1 sil = 1 (i = 1; :::; N) (4)By this 
onstru
tion, the input ve
tor x 
an be 
hanged into one out of possible MN newinput ve
tors.If we assume a feed-forward neural network with one hidden layer, the 
ommittee outputfor the modi�ed input ve
tor x+ dx is given by,y
om(x+ dx) = 1P PXk=1 yk(x+ dx) (5)= 1P Xk �o0�Xj !(k)j �h  Xi ~!(k)ij "xi +Xl sil�il#!1A (6)where �o(�) and �h(�) are the a
tivation fun
tions for the output and the hidden layer,respe
tively. The input to hidden weights for the k:th network in the 
ommittee are2



denoted by ~!(k)ij and the 
orresponding hidden to output weights are !(k)j (see Fig 1). Fora �xed set of weights and input ve
tor 
hanges (�il), y
om 
an be regarded as a fun
tion ofthe de
ision variables sil. Next we will formulate two di�erent 
ost fun
tions that are tobe minimized with respe
t to sil.
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x1 x2 xNFigure 1: The neural network ar
hite
ture used in this paper.The Cost Fun
tionsDepending on the obje
tive with the 
ase-based sensitivity analysis two di�erent 
ostfun
tions will be formulated. If we want to �nd unimportant input variables for a parti
ular
ase, the input ve
tor 
hanges (�il) 
an be de�ned as:�i0 = �xi (7)�i1 = 0 (8)with M = 2. This implies that ea
h input variable 
an be either "o� or on". A suitable
ost fun
tion to minimize is therefore,E1(S) = (y
om(x+ dx)� y
om(x))2 + � NXi=1 si0 �No�!2 (9)where S denotes the matrix with elements sil. The �rst term minimizes the di�eren
ebetween the modi�ed and the original 
ommittee output. The se
ond term is zero when3



the number of input variables in the "o�" state is No�. The set of variables fsilg minimizingthis 
ost fun
tion determines theNo� input variables that, when deleted, makes the smallest
hange of the 
ommittee output. Sin
e this is a 
ase-based analysis one has to minimizethis 
ost fun
tion for ea
h 
ase.On the other hand if the obje
tive is to �nd a set of input variables that are important fora parti
ular 
ase, another 
ost fun
tion must be minimized. Importan
e is now measuredas 
ausal importan
e, whi
h means that we want to identify the input variables that, when
hanged, has the largest e�e
t on the 
ommittee output. The 
ost fun
tion appropriatefor this is, E2(S) = � (y
om(x+ dx)� y
om(x))2 + � NXi=1 si0 � (N �Nmod)!2 (10)The �rst term now maximizes the 
hange 
aused by modifying the input x! x+dx. Theinput ve
tor 
hanges are de�ned in order to 
over a small neighborhood around x,�il = 2lM Æixi (l = 1; :::;M=2) (11)�il = �2(l �M=2)M Æixi (l = M=2 + 1; :::;M) (12)�i0 = 0 (13)with appropriate values for Æi. M should be large enough in order to avoid e�e
ts of thedis
retization. The se
ond term in the 
ost fun
tion (Eq. (10)) for
es the solutions to haveNmod modi�ed input variables.When minimizing either of the 
ost fun
tions E1 or E2 the solutions found must 
onform tothe Potts 
onditions of Eq. (4). Next we will see how the method of mean �eld annealing
an be used to eÆ
iently �nd good minima to the 
ost fun
tions.The Mean Field Annealing MethodSin
e the 
ase-based sensitivity analysis is formulated as a 
ombinatorial optimizationproblem we need an eÆ
ient pro
edure for minimizing E1;2 with respe
t to the binary silvariables and subje
t to the 
onstraints of Eq. (4). This is a non-trivial minimizationproblem. Using some lo
al updating rule will most often yield a lo
al minimum 
lose tothe starting point, with poor solutions as a result. Simulated annealing (SA) [2℄ is oneway of es
aping from lo
al minima sin
e it allows for uphill moves in E. In SA a sequen
eof 
on�gurations is generated a

ording to a sto
hasti
 algorithm, su
h as to emulate theprobability distribution P (S) = e�E(S)=TPfS0g e�E(S0)=T (14)
4



where the sum runs over all possible 
on�gurations S 0. The parameter T (temperature)a
ts as a noise parameter. For large T the system will 
u
tuate heavily sin
e P (S) is very
at. This implies that the generated 
on�gurations 
ontain mostly poor and infeasiblesolutions. On the other hand, for a small T , P (S) will be narrow, and the sequen
e of
on�gurations will be strongly dependent upon the initial one and 
ontain 
on�gurationsonly from a small neighborhood around the initial starting point.In SA one generates 
on�gurations while lowering T (annealing), thereby diminishing therisk of ending up in a suboptimal lo
al minimum. This is quite CPU-
onsuming, sin
e onehas to generate many 
on�gurations for ea
h temperature following a 
areful annealings
hedule (typi
ally Tk = To=(log(1 + k)) for some To) in order to be 
ertain to �nd theglobal minimum. In the mean �eld annealing (MFA) approa
h [3℄ the 
ostly sto
hasti
 SAis approximated by a deterministi
 pro
ess. MFA also 
ontains an annealing pro
edure.The original binary variables sil are repla
ed by 
ontinuous mean �eld variables vil 2 [0; 1℄,with a dynami
s given by iteratively solving of the so-
alled mean �eld equations for ea
hT .An additional advantage of the MFA approa
h is that the 
ontinuous mean �eld variables
an evolve in a spa
e not a

essible to the original binary variables. The mean �eldequations suitable for updating our mean �eld variables are:vil = exp(uil=T )PMk=1 exp(uik=T ) (15)where the variables uil are given by, uil = �E�vil (16)Usually, in order to improve 
onvergen
e, the derivatives in Eq. (16) are repla
ed by �nitedi�eren
es (see e.g. [4℄). The algorithmi
 pro
edure for minimizing the 
ost fun
tion issummarized if Fig. 2:EXPERIMENTSThe 
ase-based sensitivity analysis method outlined above is applied on a 
lassi�
ationproblem from the medi
al domain. The task is to dete
t a
ute myo
ardial infar
tion(AMI) in ele
tro
ardiograms (ECGs) with left bundle bran
h blo
k (LBBB) [5℄. Earlydiagnosis of AMI is of vital importan
e. The 12-lead ECG is still the best and mostreadily available devi
e for investigation of AMI, and sin
e the presen
e of (LBBB) makesthe ele
tro
ardiographi
 manifestations of a
ute myo
ardial transmural is
hemia diÆ
ultto dete
t, the presen
e of LBBB is an issue of major diagnosti
 importan
e.5



1. Initialize the mean �eld variables 
lose to the value 1=M(randomly).2. Set the start temperature to a large value (e.g. To = 10).3. Randomly (without repla
ement) sele
t one row of the Vmatrix, say row k.4. Update all vkl(l = 1; :::;M) a

ording to Eq. (15).5. Repeat items 3-4 M times (su
h that all rows have beenupdated on
e).6. Repeat item 5 until no 
hanges o

ur (de�ned by e.g.1MN Pil jvil � voldil j � 0:01).7. De
rease the temperature, T ! �T (e.g. � = 0:95 ).8. Repeat items 3-7 until all vil are 
lose to 1 or 0.9. Finally, the mean �eld solution is given by the integer limitof vil, i.e. for ea
h row i (i = 1; :::; N) sele
t the 
olumn l�su
h that vil� is the largest element for this row. Let sil� = 1and all other sil = 0 for this row.Figure 2: Summary of the mean �eld annealing algorithm.Study PopulationThis study is based on ECGs re
orded at the emergen
y department of the UniversityHospital in Lund, Sweden from July 1990 to May 1997. The �nal data set 
onsists of 518ECGs with LBBB 
on�guration, of whi
h 120 are re
orded on patients with AMI and 398on 
ontrol patients. The AMI group 
onsists of 74 ECGs re
orded on males and 46 ECGsre
orded on females. The 
ontrol group is 
omposed of 202 ECGs re
orded on males and196 ECGs re
orded on females. Fig. 3 shows two ECGs from the study group, where theECG on the right-hand side 
omes from a patient with a diagnosis of AMI.Ele
tro
ardiographyThe 12-lead ECGs are re
orded by 
omputerized ele
tro
ardiographs (Siemens-Elema AB,Solna, Sweden), with 7 measurements from ea
h of 5 leads being sele
ted for furtheranalysis: QRS duration, Q, R, and S amplitudes, and three ST-T measurements (ST-Jamplitude, ST amplitude 3/8 and positive T). The ST amplitude 3/8 was obtained bydividing the interval between ST-J point and the end of the T wave into eight parts ofequal duration. The amplitude at the end of the third intervals was denoted ST amplitude3/8. In total 35 measurements from the ECG are used as inputs to the neural network.6



Figure 3: Example of ECGs with presen
e of left bundle bran
h blo
k. (left) No diagnosis of a
utemyo
ardial infar
tion. (right) With a diagnosis of a
ute myo
ardial infar
tion.Arti�
ial Neural NetworksA standard feed-forward, one-hidden-layer neural network ar
hite
ture is used in this study.The input layer 
omprises 35 nodes, one for ea
h of the ECG measurements. The hiddenlayer 
ontains 5 nodes and the output layer 
onsists of one node, whi
h en
odes the outputas to whether the patient su�ers from AMI or not AMI. A weight elimination term [6℄ isadded to the Kullba
k-Liebler error fun
tion in order to regularize the neural network. Theregularization parameter is set using a 4-fold 
ross-validation s
heme. Finally, a 
ommitteeof 10 networks is trained using the full training set. The training set 
onsists of a randomsele
tion of 478 ECGs, the remaining 40 ECGs are used as test 
ases for the 
ase-basedsensitivity analysis.Case-based sensitivity analysisIn order to �nd important measurements for the di�erent 
ases in the test set we use a
ost fun
tion of the se
ond type E2 (see Eq. (10)). The number of input ve
tor 
hangesM is 11 and the maximum deviation Æi for ea
h input xi is set to, Æi = 0:05xi. Thenumber of modi�ed variables Nmod is 5, whi
h means that the 5 most in
uential inputswill be dete
ted. We are also looking for inputs that 
an be deleted and still get the same7




ommittee output, i.e. using a 
ost fun
tion of type E1. The parameters used for this andthe previous analysis are summarized in Table 1.Cost fun
tion M Æi Nmod / No� �E1 2 - No� = 10 � 1:0E2 11 Æi = 0:05xi Nmod = 5 � 2:0Table 1: Parameters used when analyzing the 
ases in the test set with a 
ost fun
tion of type E1 or E2.The value of the � parameter is in
reased from the value in the table until a valid solution is found.
1 RESULTSIt is interesting to monitor the development of the mean �eld variables during the mini-mization pro
ess (annealing). Fig. 4 shows su
h a set of mean �eld variables for one of thetest 
ases, during the minimization of E2. At high temperature (left part of the graph)

Figure 4: The development of the mean �eld variables during the minimization of E2 for a 
ase in the testset.all variables (385) have approximately the value of 1=M . However, as the temperaturede
reases, the variables 
onverge to either one or zero.8



The result of the 
ase-based sensitivity analysis for some of the test 
ases is shown in Table2. This table lists the 5 most important input measurements for 2 non-AMI ECGs and2 from ECGs with diagnosis of AMI. Case 1 and 3 got the wrong 
lassi�
ation from thenetwork, while 
ase 2 and 4 were 
orre
tly 
lassi�ed.Case Network output True 
lass Important measurements1 0.54 0 Qamp-II, Samp-II, STamp-V2, STamp-V3 , STamp-V42 0.034 0 QRSdur-V4, Samp-I, STamp-I, ST38amp-II, STamp-V23 0.028 1 QRSdur-V2, QRSdur-V3, Samp-II, Samp-V2, T+amp-V24 0.78 1 Qamp-V3, STamp-II, STamp-V2, STamp-V4, T+amp-V4Table 2: The important measurements for 4 
ases in the test set, together with the network output andtrue 
lass belongings.Looking at the other 
ases in the test set one �nds that the measurements from the ST-Tinterval are usually important, whi
h is natural for the dete
tion of AMI.Looking at the results for the minimization of the 
ost fun
tion E1, whi
h aims at �ndingunimportant input variables one 
an dedu
e that the measurements QRSdur-II, Qamp-I,Qamp-V4, Ramp-I and Ramp-V4 are not important for the 
lassi�
ation of AMI. This 
on-
lusion is based on an average of the 40 test 
ases and there are variations between thedi�erent 
ases, whi
h makes the 
ased-based sensitivity analysis useful.CONCLUSIONSWe have developed a 
ase-based sensitivity analysis method for arti�
ial neural networks.It 
an be used in order to �nd both important and unimportant input variables for ea
h
ase presented to the neural network.Although not presented in this paper, the method 
an be used to �nd the minimal setof 
hanges for a mis
lassi�ed ECG, in order to obtain the 
orre
t 
lassi�
ation. Thisappli
ation requires another representation of the ECG that enables a visual inspe
tion ofthe inferred 
hange. This 
an be of great bene�t for the medi
al do
tor when analyzingthe ECG.The 
ase-based sensitivity analysis presented here is not limited to 
lassi�
ation of ECGs,there is a wide range of problems both within and outside the medi
al domain, where
ase-based sensitivity analysis 
ould be helpful.9
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