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racic tracings. Atrial reversal flow, however, is most
important in assessing LV diastolic pressure. Be-
cause pulmonary veins are located far from the trans-
ducer in the apical 4-chamber view, PV flow assess-
ment by pulsed Doppler TTE is thought to be limited
in some cases. Although a recent report7 suggested
that transthoracic measurements are of sufficient
quality in PV flow recordings, operator-, patient-,
and equipment-related limitations of the transtho-
racic approach can make the examination difficult
and the results of questionable reliability in some
cases.

Intravenous injection of sonicated albumin pro-
vides enhancement of the Doppler flow signals in the
left heart chamber. It has been reported that this tech-
nique can be used in evaluating aortic stenosis by
enhancement of Doppler flow signal through the aor-
tic valve. In the present study, in most of the patients,
PV flow signal was enhanced after intravenous in-
jection of sonicated albumin. This result suggests
that improved visualization of pulmonary venous
flow Doppler signal by intravenous injection of son-
icated albumin should be useful in the clinical set-
ting.

In conclusion, color Doppler signal of PV flow
was enhanced and the otpimal recordings could be

detected in most cases after intravenous injection
of sonicated albumin. Improved visualization of PV
flow Doppler signal by intravenous injection of son-
icated albumin should have important clinical im-
plications for the assessment of LV diastolic func-
tion by using Doppler technique.
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TABLE I Reasons for Exclusion of ECGs (n Å 11,423)

Reason for Exclusion No. of ECGs Excluded

Lead reversals 208
Left arm/left foot 12
V1/V2 3
V2/V3 16
V3/V4 6
V4/V5 11
V5/V6 68
Right/left arm 47
Right arm/right foot 31
Other lead reversals 14

Pacemaker ECG 197
Technically deficient ECG 118

Total 523

In the electrocardiographic recording situation, lead
reversals occasionally occur.1–3 They are often

overlooked, both by the electrocardiogram (ECG)
readers and by the conventional interpretation pro-
grams; this may lead to misdiagnosis and improper
treatment.3,4 Artificial neural networks represent a
computer-based method5,6 that have proved to be of
value in pattern recognition tasks, such as ECG anal-
ysis.7–10 They have showed high performance, ex-
ceeding that of 2 well-known interpretation pro-
grams, detecting right/ left arm lead reversals on the
12-lead ECG.1 Left arm/left foot lead reversal is also
clinically important, as some precordial lead rever-
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sals do occur quite frequently. The purpose of this
study was to detect the left arm/left foot lead reversal
and the 5 precordial lead reversals involving 2 ad-
jacent leads with the help of artificial neural net-
works, and to compare the results with those of a
widely used interpretation program concerning the
precordial lead reversals.
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FIGURE 1. ECG with left arm/left foot lead reversal (left) and the
correctly recorded ECG on the same subject (right). This lead re-
versal can be simulated by relabeling of correctly recorded leads.

FIGURE 2. The interpretation program reported ectopical atrial
rythm in this ECG with left arm/left foot lead reversal (left). Also
note that no Q waves are present in the inferior leads. The ECG
with correct lead placement (right) shows sinus rhythm and a
healed inferior myocardial infarction.

j j j

A total of 11,432 ECGs, recorded for patients in
the emergency department at the University Hospital
in Lund, Sweden, from 1992 to 1993, were studied.
The 12-lead ECGs were recorded using computer-
ized electrocardiographs (Siemens-Elema AB,
Solna, Sweden). Averaged heart cycles were cal-
culated and transferred to a computer for further
analysis. P, QRS, and ST-T measurements used in
the criteria and as inputs to the artificial neural net-
works were obtained from the measurement program
of the computerized ECG recorders.

Since artificial neural networks learn by training
on a database of examples, it was crucial that no
ECG with a lead reversal be presented to the network
as an example of an ECG with correct lead place-
ment. Therefore, great care was taken to exclude any
ECGs from the database that showed signs of lead
reversals or that were technically deficient. Pace-
maker ECGs were also excluded. The exclusion pro-
cess comprised visual inspection by 2 experienced
ECG readers and computer-based methods using ar-
tificial neural networks.1 ECGs with suspected lead
reversals were verified in most cases by visual com-
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TABLE II Sensitivities and Specificities of Artificial Neural Networks and
Conventional Criteria

Lead Reversal

Artificial Neural Networks

Sensitivity (%) Specificity (%)

Conventional Criteria

Sensitivity (%) Specificity (%)

Left arm/left foot 57.6 99.97 — —
V1/V2 80.6 99.94 4.0 99.95
V2/V3 44.5 99.87 9.3 100
V3/V4 77.5 99.95 10.0 100
V4/V5 83.0 99.95 4.7 100
V5/V6 73.2 99.88 0.1 100

TABLE III Measurements Used in Neural Networks Trained to Detect Lead Reversals

Lead Reversal Measurements

Left arm/left foot Q, R, and S amplitudes in I, II, III, aVL, and aVF
*T sum in I, II, III, aVL, and aVF QRS† axis

V1/V2 Q, R, S, and T amplitudes in V1–V4

V2/V3 R, S, and T amplitudes in V1–V4 QRS area in V1–V4

V3/V4 R, S, and T amplitudes in V2–V5 QRS area in V2–V5

V4/V5 R, S, and T amplitudes in V3–V6 QRS area in V3–V6

V5/V6 Q, R, S, and T amplitudes in V3–V6

* T sum Å maximal positive T amplitude 0 Émaximal negative T amplitudeÉ.
† QRS axis was presented as sin(axis·p/180) and cos(axis·p/180).

parison of the suspected ECG with an earlier or later
recording from the same patient. A total of 523
ECGs were excluded, leaving 10,906 ECGs in the
database (Table I) .

The 10,906 correctly recorded ECGs were used
for computational generation of 6 subsets of ECGs,
each with 1 type of lead reversal. The left arm/left
foot lead reversal was generated by means of chang-
ing places of leads I and II, inverting lead III, and
changing places of aVL and aVF (Figure 1). The 5
precordial lead reversals were generated by inter-
changing adjacent leads. This process yielded ex-
actly the same ECGs that would have been recorded
had the leads been interchanged on the patient. Thus,
the final material consisted of 76,342 ECGs, divided
into 7 groups.

A multilayer perceptron artificial neural network
architecture11 was used. A more general description
of neural networks can be found elsewhere.5 One
neural network was used for each lead reversal. The
neural networks consisted of 1 input layer, 1 hidden
layer, and 1 output layer. The latter consisted of 1
unit and encoded whether the ECG was recorded
with correct lead placement. The hidden layer of the
neural networks contained 7 (left arm/left foot lead
reversal) and 4 (precordial lead reversal) neurons,
respectively. Different combinations of P, QRS, and
ST-T measurements were used as inputs to the neural
networks. The number of neurons in the input layer
was equivalent to the number of input variables—in
this study 22 for the left arm/left foot lead reversal
and 16 for each of the different precordial lead re-
versals. Each network was trained and tested using
the 10,906 ECGs with correct lead placement and
10,906 ECGs with the appropriate lead reversal.

For each lead reversal, the data set was divided
into 2 parts: a training set and a test set. The training

set was used to adjust the connec-
tion weights, whereas the test set
was used to assess the performance.
In order to obtain as reliable perfor-
mance as possible, a cross-valida-
tion procedure was used. The data
set was randomly divided into equal
parts, and each of the different parts
was used once as a test set, while
training was performed on the re-
maining parts of the data. We used
threefold cross-validation to decide
when to terminate learning in order
to avoid ‘‘overtraining’’ and eight-
fold cross-validation to train the net-
works and assess their performance.
Performance was studied in the sep-
arate test set, and the results are the
mean values from 10 different runs;
that is, each ECG was in the test set
10 times. During the training pro-
cess, the connection weights be-
tween the neurons were adjusted us-
ing the backpropagation algorithm.

In order to attain very high specificity, the networks
were trained to identify ECGs with correct lead
placement with highest possible accuracy. This was
done during the training session by means of pre-
senting these ECGs 300 to 500 times more often to
the networks than the ECGs with a lead reversal. All
calculations were performed using the JETNET 3.0
package.12

The interpretation program developed at the Glas-
gow Royal Infirmary contains criteria for the detec-
tion of precordial lead reversals.13 These criteria
were applied to the correct ECGs and the ECGs with
computer-generated precordial lead reversals. The
performance of each of the criteria was compared to
that of the neural networks. There are no published
criteria for the detection of left arm/left foot lead
reversal.

Sensitivities and specificities of the neural net-
works and the conventional criteria for detection of
lead reversals are presented in Table II. The net-
works used QRS and T-wave measurements only as
inputs (Table III) . The addition of P-wave data to
the input variables failed to improve the performance
of the networks. The specificities of the networks and
the conventional criteria were very high for all lead
reversals. Also, the sensitivities were generally high
for the networks, ranging between 44.5% and 83.0%,
while the sensitivities for the conventional criteria
were much lower, ranging between 0.1% and 10.0%.

Figures 2 to 4 show examples of ECGs that have
been misinterpreted by the conventional interpreta-
tion program as a result of lead reversals that were
not detected. The ECGs presented were among the
208 ECGs with lead reversals found in the original
database of 11,423 ECGs. The cases in the figures
were all detected as lead reversals by the neural net-
works developed on the larger database.
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FIGURE 3. ECG with a left arm/left foot lead reversal with ST de-
pressions in the inferior leads (left). ECG with correct lead place-
ment (right). There are ST elevations in the inferior leads, consis-
tent with acute myocardial injury. FIGURE 4. ECG with a reversal of V1/V2 (left). This gives an im-

pression of loss of R-wave amplitude and septal ST changes sug-
gesting ischemic heart disease, according to the interpretation
program. ECG with correct lead placement (right). The lead re-
versal was not detected by the interpretation program that incor-
porates conventional criteria for detection of near-neighbor lead
reversals but was found by the neural network.

j j j

The results clearly demonstrate that artificial neu-
ral networks can be used to detect lead reversals in
the 12-lead ECG with very high specificity and in
most cases high sensitivity. Lead reversals were
found in nearly 2% (208 of 11,432) of the ECGs in
this study and, considering that an estimated 300 mil-
lion ECGs are recorded annually in the world, ap-
proximately 6 million of these may be recorded with
a lead reversal. Most are not detected today, espe-
cially for the left arm/left foot lead reversal, as well
as some precordial lead reversals under study in this
paper.

In this study, 208 ECGs with a lead reversal were
found in the database, 116 of 194 belonging to 1 of
the types under study in this paper or 47 of 194 to 1
of the lead reversals involving the right/ left arm
leads or 31 of 194 the right arm/foot leads, which
were studied earlier.1,4 These 8 types of lead reversal
represent ú90% of all the lead reversals found in
our database; this could probably be true for other
settings as well. The results from this and earlier
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studies demonstrate that approximately 75% of these
lead reversals could be detected by artificial neural
networks, in combination with an algorithm for de-
tection of the right arm/right foot lead reversal.
There are many other types of lead reversal, and each
of them may occur, although infrequently. Neural
networks have not been developed for the specific
detection of each of those different types, but many
of them would be detected by the networks devel-
oped for the most common lead reversals.

With a few exceptions, electrocardiography and
cardiology textbooks do not cover lead reversals or
their implications. The right arm/right foot lead re-
versal, which is relatively common, as well as the
lead reversals under study in this paper, are generally
not presented at all, whereas the very rare right arm/
left foot, 14 left arm/right foot, 15 and clockwise/
counterclockwise16 lead reversals have been de-
scribed.

How might these neural networks be used in clin-
ical routine? We believe that the electrocardiograph
presents a warning, based on neural network outputs,
and can be used to advise the technician to check the
cables. The recording is interrupted, and no ECG
complexes or ECG interpretation are presented. The
technician must either then confirm that the leads are
correctly placed or correct the leads before the re-
cording can be completed. With this approach, lead
reversals could easily be corrected and a false detec-
tion by the neural networks would not cause much
inconvenience.

Another approach is the computerized electrocar-
diographs used today. A statement of suggested lead
reversal is presented in the interpretation text. The
leads affected by the possible lead reversal are dis-
regarded in the interpretation and are therefore in-
complete. This approach has 2 disadvantages. First,
the statement in the interpretation text could easily
be missed by the technician in the recording situa-
tion. Second, a false detection by the interpretation
program will result in an incomplete interpretation
and the technician cannot change this when checking
that the leads are correctly placed. Therefore, no (or
almost no) false detections can be accepted using
this approach; that is, specificity must be (almost)
100%.

If the specificity is not sufficiently high for the
lead reversals, many of the ECGs reported as a case
of lead reversal would actually be a correctly re-

corded ECG. The positive predictive value, though,
does not depend on the specificity alone, but on the
sensitivity and prevalence for different lead reversals
as well. The highest positive predictive value, 79%,
has the precordial lead reversal that appeared most
often in the database, the interchanging of leads V5/
V6, although the specificity was the second lowest
among the studied lead reversals.

Artificial neural networks can be used to rec-
ognize lead reversals in the 12-lead ECG at very
high specificity, and the sensitivity was much higher
than that of a conventional interpretation program.
The neural networks developed in this and an ear-
lier study for detection of lead reversals, in com-
bination with an algorithm for the right arm/right
foot lead reversal, would recognize approximately
75% of lead reversals encountered in clinical prac-
tice.
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