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Abstract
The purpose of the present study was to develop a computer-based method

for automatic detection and localization of coronary artery disease in myocardial
bull’s-eye scintigrams. Methods: A population of 135 patients who had
undergone both myocardial technetium-99m-sestamibi rest-stress scintigraphy
and coronary angiography within 3 months was studied. Different image data
reduction methods, including pixel averaging and 2-dimensional Fourier
transform, were applied to the bull’s-eye scintigrams. After a quantitative and
qualitative evaluation of these methods, 30 Fourier components were chosen as
inputs to multilayer perceptron artificial neural networks. The networks were
trained to detect coronary artery disease in two vascular territories using coronary
angiography as gold standard. A ”leave one out procedure” was used for training
and evaluation. The performance of the networks was compared to those of two
human experts. Results: One of the experts detected coronary artery disease in
one of two vascular territories with a sensitivity of 54.4% at a specificity of
70.5%. The sensitivity of the networks was significantly higher at that level of
specificity (77.2%, p=0.0022). The other expert had a sensitivity of 63.2% at a
specificity of 61.5%. The networks had a sensitivity of 77.2% (p=0.038) also at
this specificity. The differences in sensitivity between experts and networks for
the other vascular territory were all less than 6% and not statistically significant.
Conclusions: Artificial neural networks can detect coronary artery disease in
myocardial bull’s-eye scintigrams with such a high accuracy that the application
of neural networks as clinical decision support tools appears to have significant
potential.
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networks, computer; Heart disease, ischemic; Radionuclide imaging

Abbreviations used:
CAD Coronary Artery Disease;
LAD Left Anterior Descending artery
LCX Left Circumflex Artery
RCA Right Coronary Artery
RMS Root Mean Square
ROC Receiver Operating Characteristics
SPECT Single Photon Emission Computed Tomography.
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Introduction
Computer-aided interpretation of diagnostic images has gained much interest

in the fields of radiology, nuclear medicine and magnetic resonance imaging (1,
2). Computer technology can be used to support non-experts with a preliminary
interpretation in situations where experts are not present. Interpretation of
diagnostic images is a pattern recognition task, the result of which generally
cannot be encapsulated in a set of criteria. Consequently conventional rule-based
expert systems have achieved only limited success in this area. Artificial neural
networks represent a computer-based decision method that has proved to be of
special value in pattern recognition tasks (3, 4). It is therefore of interest to
evaluate the feasibility of using artificial neural networks for interpretation of
diagnostic images. However, the large data content in diagnostic images causes
problem in training the neural networks.

Artificial neural networks learn by example. The number of examples needed
for the network training depends on the size of the network. A large network fed
with many input variables needs many examples to train properly. Images,
especially in radiology but also in nuclear medicine and magnetic resonance
imaging, contain large numbers of pixels. A commonly used image matrix in a
scintigram is 256 × 256, i.e. 65,536 pixels. If all these pixel values were fed to a
neural network thousands of examples would be needed. The number of images
available for training is typically in the order of 100. A substantial data reduction
must therefore be performed without losing the relevant information, prior to the
network training.

The purpose of the present study was to develop a computer-based method to
classify myocardial perfusion bull’s-eye images. Different methods to reduce the
data volume of the images were studied. Thereafter, artificial neural networks
were trained to detect coronary artery disease (CAD). The performance of the
networks was compared to that of two human experts using coronary angiography
as gold standard.

Materials and Methods
Patient Population

All patients at Lund University Hospital, who during the period from
November 1992 to October 1994 had undergone both rest-stress myocardial
perfusion scintigraphy and coronary angiography within three months, were
studied retrospectively. The total material consisted of 166 patients and 31 of
these patients were excluded because they had undergone angioplasty or coronary
artery bypass surgery or had signs of progressive CAD between the scintigraphy
and angiography. The population studied consisted of 135 patients (94 males and
41 females, age mean 56.7, range 21-77 years). A contrast left ventriculogram
was performed in 106 patients. The ejection fraction was normal in 65 patients
(61%), slightly to moderately reduced in 28 (26%) and severely reduced in 13
patients (12%).
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Coronary Angiography
Coronary angiography was used as gold standard. The patients were

examined using the standard Judkins technique. Angiograms were performed and
interpreted by experienced cardiac radiologists. Each coronary artery was
examined in 4-6 projections, of which at least two were orthogonal. Significant
CAD was defined as 75% or more lumen area reduction in a major coronary
artery. The severity of a coronary stenosis was determined by visual assessment.
The total myocardial perfusion bed was divided into two vascular territories. One
territory was assigned to the vascular bed of the left anterior descendent artery
(LAD); the other territory was assigned to the vascular bed of the left circumflex
artery (LCX) and the right coronary artery (RCA) together. Each territory was
studied separately regarding presence or absence of CAD. In 41 patients CAD
was found in both the LAD and the RCA/LCX territories and in 46 patients CAD
was found in one territory only (15 LAD and 31 RCA/LCX). Coronary
angiography did not reveal significant CAD in the remaining 48 patients.

Myocardial Scintigraphy
Rest and stress studies were performed in a one-day technetium-99m-

sestamibi protocol, using 300 MBq at rest, and after a delay of about three hours,
900 MBq at stress. The time period between injection and imaging was one to
two hours for the rest studies and 30 minutes to one hour for the stress studies.
Out of the 135 patients studied, 131 underwent exercise on a bicycle ergometer
and four were injected with dipyridamole (0.56 mg/kg).   Exercise was symptom-
limited (anginal pain, severe dyspnea or severe fatigue) unless malignant
arrhythmia or exercise hypotension occurred (>10 mmHg drop between exercise
stages). Workload was increased in a stepwise manner with 10 W/min. Exercise
was continued for 1 minute after injection.

The scintigraphy data were acquired in continuous single photon emission
computed tomography (SPECT) over 180 degrees during 20 minutes with a 51 ×
37 cm gamma camera (Toshiba GCA-901A/SA), using a low-energy, high
resolution collimator (full width at half maximum 9.7 mm at 15 cm) and a zoom
factor of 1.5 (pixel size 5.33 mm). Data were binned to 45 projection angles in a
64 × 64 matrix. Reconstruction was undertaken with standard techniques, using a
2-dimensional Butterworth pre-reconstruction filter (5)

f(ω) = 1/(1+(ω/ωc )
m),

with m = 6 and ωc = 0.25 cycles per pixel, followed by a ramp reconstruction
filter.

A short-axis slice set was generated for entry into a bull’s-eye (6) program,
in which careful 3-dimensional alignment of the rest and stress images were
performed on an interactive basis by experienced clinical operators. This
procedure included translations along the left ventricle axis and small corrections
to the initially selected direction of this axis. Rotations about the axis were not
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made. After slice selection and positioning, data were sampled for the myocardial
maximum in 64 radial directions for each slice, including the apex. The sampled
data were then linearly interpolated to exactly 17 slices, and organized in a matrix
map of size 17 slices × 64 angles. The rest matrix, corrected for decay of
technetium-99m during the interval from rest to stress, was subtracted from the
stress matrix as background. The maps were then normalized as follows: the rest
map was scaled such that the average value of the region above 90% of its
maximum was put to a fixed value, the same for all patients. The stress map was
then scaled such that its average value, in the region above 90% of its maximum,
was made equal to the average value of the rest map in a geometrically identical
region. This normalization makes the rest and stress data equal in a region which
is likely to be least ischemic and makes the absolute normalization dependent on
the rest data only. The polar representation of these data was only used for visual
classification; the neural networks worked exclusively on Cartesian data.

Image Data Reduction
In order to shrink the dimensionality of the artificial neural network input

space, different image data preprocessing methods were evaluated. In Figure 1 an
original rest image is presented in polar form together with five images
reproduced using different data reduction methods. The original 17 × 64 image
matrix was coarsened to 1 × 8 and 4 × 4 pixels respectively as shown in Figure 1
b-c. The resulting numbers of variables for a rest and a stress study together were
16 and 32. Figure 1 d-f shows reconstructed rest images using 2-dimensional
Fourier transform technique with inverse transformation of 18, 30 and 72
components for the rest and stress studies together.

The following technique for extracting Fourier components from the rest and
stress images was used. Each of the two 17 × 64 images was expanded by
mirroring about row 17, and then discarding the last row (i.e. the first row of the
succeeding Fourier period), to produce 32 × 64 matrices. By this construction,
only local data were in effect convoluted by the extraction of a few of all the
available Fourier components, irrespective of slice location. The two 32 × 64
matrices were input as the real and imaginary parts of a complex 32 × 64 matrix
in a fast Fourier transform (7) The spatial low-frequency components describing
the rest and stress images are found near the origin in the spatial frequency plane,
as mapped by the transformed complex matrix. Selections of up to 36 complex
low frequency components (72 real values) were made for further image analysis.
Since the relative importance of axial and radial information is a priori unknown,
different sets of components were tried.

The number of components needed to reproduce the original rest and stress
images in a satisfactory way was analyzed both quantitatively and qualitatively.
The differences in pixel values of the original images and the corresponding
values of the inverse-transformed data were studied using root mean square
(RMS) error calculations. A visual inspection of original and inverse-transformed
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images was also performed as in Figure 1. The best method, with consideration
taken both to amount of image reduction and differences between original and
inverse-transformed images, was then used to calculate input variables to the
artificial neural networks.

Figure 1. Comparison
between (a) original
bull’s-eye image and
the corresponding
images reconstructed
with different data
reduction methods;    
b-c) coarsened images
obtained by pixel
averaging in 8 and 16
sectors; d-f) images
reconstructed from 18,
30 and 72 Fourier
components.

Neural Network
A multilayer perceptron neural network architecture (8) was used. The

networks consisted of one input layer, one hidden layer and one output layer. The
number of neurons in the input layer was equal to the number of input variables
(30). The hidden layer contained three neurons and the output layer contained one
neuron which encoded whether CAD was present or not. Three different sets of
networks were studied, one that determines whether CAD was present or absent
regardless of the location, one that detects CAD in the LAD territory and one that
detects CAD in the RCA/LCX territory. The same type of network architecture
and training parameters were used for the different networks.

During the training process the connection weights between the neurons were
adjusted using the back-propagation algorithm. The sigmoid activation function
was used. The learning rate had a start value of 0.3. During the training it was
decreased between epochs. The momentum was set to 0.7. Updating occurred
after each twenty patterns. The network weights were initiated with random
numbers between -0.03 and 0.03. Training was set to stop at a training error of
0.36. All calculations were done using the JETNET 3.0 package (9).
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The output values for test cases were in the range from 0 to 1. A threshold in
this interval was used above which all values were regarded as consistent with
CAD. By varying this threshold a receiver operating characteristic (ROC) curve
was obtained.

”Leave One Out” Procedure
In order to get as reliable performance as possible a ”leave one out”

validation procedure was used. One patient study was used as test case while the
remaining 134 cases were used for training. This procedure was repeated 135
times such that each case in the data set once was used as a test case. The test
results of the 135 different networks were then concatenated and the resulting list
was used in the calculations of neural network performance.
Human Expert Classification

The performance of the networks was compared with those of two human
experts. The bull's-eye images were presented to the experts in random order.
Neither clinical data nor the results from angiography, neural networks or the
classification of the other expert were available during the classification
procedure. The experts had to rely on four bull’s-eye images per patient study
only: rest image, stress image, difference image and ratio image. They did not
view short or long axis images. The experts classified each patient study and each
vascular territory for the presence of CAD using a 4-grade scale; 'definitely not
CAD', 'probably not CAD', 'probably CAD' and 'definitely CAD'.

Statistical methods
Sensitivity and specificity for the experts in assessing CAD/no CAD was

calculated and plotted together with the ROC curves for the networks. Areas
under the ROC curves were calculated for the networks as a measure of
performance. The 4-grade scale used by the experts made it possible to calculate
three sensitivity/specificity pairs for each expert. The comparisons between
networks and experts were performed as follows. The threshold applied to the
network outputs was chosen such that the specificity of the neural networks was
the same as that of the expert. Thereafter the corresponding sensitivity of the
networks was compared to the sensitivity of the expert and the significance of the
difference in sensitivity was tested paying attention to the fact that the same
scintigrams were used, i.e. a McNemar type of statistic was used.
Results
Image Data Reduction

The results of the quantitative comparison between the different image data
reduction methods are presented in Figure 2. The RMS values of the Fourier
transformed and inverse transformed images were lower than those of the images
which were coarsened with pixel averaging, compared at the same number of
variables. An increase in the number of variables used to describe an image
reduced the RMS error irrespectively of the method used. In the images based on
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9 complex Fourier components (18 values), small but clinically important
perfusion defects are not reproduced satisfactory. Most of the relevant
information of the original images is contained in the images based on both 15
(30 values) and 36 complex components (72 values) (Figure 1) but the RMS is
not reduced in proportion to the increased number of components. For the 72
values the number of neurons in the network would exceed the number of
training examples and, as a few preliminary runs indicated, the results did not
improve. Therefore, 15 complex Fourier components were used as inputs to the
artificial neural networks.

Figure 2. RMS values for reconstructed images using different image data

reduction methods. Non-filled circles denote pixel averaging methods. Filled
circles denote Fourier transform methods. The values shown are mean and
standard error of the mean.

Image Classification
The ROC curve of the artificial neural networks detecting CAD in the LAD

territory is presented in Figure 3 together with the specificity / sensitivity value
pairs of the human experts. One of the experts had a sensitivity of 54.4% at a
specificity of 70.5%. The sensitivity of the networks was 77.2% at that level of
specificity. This difference in sensitivity of 22.8% was statistically significant
(p=0.0022). The other expert had a sensitivity of 63.2% at a specificity of 61.5%.
At this specificity the networks had a sensitivity of 77.2%, and this difference of



9

14.0% was also statistically significant (p=0.038). No other differences in
sensitivity between experts and networks were statistically significant.

The ROC curve of the networks detecting CAD in the RCA/LCX territory is
presented in Figure 4. The area under this curve was 0.82 compared to the area
under the LAD curve of 0.76. The networks determining CAD regardless of
location had an area under the ROC curve of 0.80 (Figure 5). The differences in
sensitivity between experts and networks shown in the Figures 4 and 5 were all
less than 6% and not statistically significant.

Figure 4. Classification performance for
detecting CAD in the RCA/LCX territory.
Same notation as in Figure 3.

Figure 3. Classification performance for
detecting CAD in LAD territory. The neural
network performance are presented as an
ROC curve and experts’ results are shown as
‘o’ (expert 1) and ‘+’ (expert 2). Statistically
significant differences in sensitivity between
networks and experts are indicated with
vertical lines.
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Figure 5. Classification performance for
detecting CAD regardless of localization.
Same notation as in Figure 3.

Discussion
We have demonstrated that artificial neural networks can be used to classify

myocardial perfusion images regarding presence and locality of CAD. The
performances of the networks were similar or better than those of two human
experts. These results indicate that neural networks could be used to assist
clinicians in achieving a correct interpretation and thereby improve the diagnostic
accuracy of medical imaging. An important ingredient in the computer-based
method to classify bull’s-eye images is the 2-dimensional Fourier transform.

The networks detected CAD with better performance in the RCA/LCX
territory than in the LAD territory. Also the experts performed best in the
RCA/LCX territory. Neither networks nor experts could achieve a very high
sensitivity even at a low specificity in the LAD territory as shown in Figure  3.
These findings indicate that they cannot find scintigraphic abnormalities in the
LAD territory in a number of cases with CAD according to coronary
angiography. This could be due to an angiographic overestimation of lesion
severity or functionally important coronary collaterals. However, the same
disagreement between angiographic and scintigraphic findings were not found in
the RCA/LCX territory.

Why Image Data Reduction?
When using artificial neural networks two things have to be considered

regarding the input data. On the one hand it is an advantage to present as much
information as possible to the network. On the other hand, a large number of
inputs results in a network with many connection weights which requires a large
training database in order to generalize well. This is because the number of
connection weights or fitted parameters depends strongly on the number of input
neurons. The number of input neurons in a network is equal to the number of
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variables which are presented to the network. In general the majority of weights
in a neural network are connecting the input neurons and the hidden neurons.

Image data reduction with 2-dimensional Fourier transform reduces the need
for a large number of input neurons. The 30 variables used in this study contain
information sufficient to reproduce the scintigrams in a satisfactory way as shown
in Figure 1. The method preserves more of the origina l image structure than
methods where the matrix for each of the rest and stress images are coarsened to
distinct predefined regions using pixel averaging. This superior performance is
not surprising since the Fourier transform does not favor fixed spatial locations as
a pre-defined subdivision might do.

The Fourier transform is well suited for the analysis of myocardial bull’s-eye
images. However, in applications where the information content of the images lie
both in the high and low spatial frequency domains, the method may need some
additional modification or may be less suitable.

Another general approach that has been used is the 'preclassification method'.
Human observers analyze the images and make classifications into a number of
predefined classes which then are used as input data (10, 11). One problem with
this method is the intra- and interobserver variability. The network could produce
different output values for the same image if it is trained with different
preclassifications. There is also a considerable risk that information missed by the
observers, is lost.

Requirements on the training material
The performance of an artificial neural network largely depends on the size

and composition of the training database. In this study a database of 135 patients
who had undergone both scintigraphy and coronary angiography was used. The
training sets contained 134 patients and the networks had 97 connection weights.
The resulting ratio between the number of examples in the training set and the
number of connection weights in the network was above one. Conversely, the
group of Fujita (12) used 58 myocardial perfusion images to train networks that
contained 26,500 connection weights. We find it remarkable that they designed a
study around networks with so many weights and so few examples. Surprisingly,
their networks correctly classified many of the cases in the test sets. One reason
for this is probably the selection of cases in the database; 74 relatively typical
cases from SPECT bull’s-eye examinations were utilized. Cases where the
diagnoses obtained by angiography and scintigraphy differed were excluded.

Porenta and coworkers (13) trained neural networks containing more than
700 connection weights with less than 40 examples from myocardial scintigraphy
with thallium-201. Their networks performed significantly worse than a human
expert. We think this is due to the small number of examples relative to the
number of connection weights.

The composition of the training set is as important as the number of
examples. The examples must be representative of patient studies found in a
clinical setting. Networks trained with a group of selected typical cases, or cases
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with purely synthesized defects will not be useful in clinical practice. Because of
the choice of clinical cases in our study, the results should give an accurate hint
of the usefulness of neural networks in a clinical environment.

Expert systems
Computer-aided decision support systems can be based on different methods

from the field of artificial intelligence. The most widely used decision support
systems, interpretation programs in computerized electrocardiographs, are
generally based on conventional expert systems. Artificial neural networks have
only recently been implemented in these programs. Expert systems have also
been developed for interpretation of myocardial bull’s-eye images (14-16), in
which criteria for the detection of CAD were developed using separate normal
limits in different predefined territories of the images. However, the visual
interpretation of an image is generally not dependent on simple criteria but to a
great extent a pattern recognition task. Artificial neural networks have shown to
be well suited for this type of tasks. Networks have outperformed very complex
expert systems, for example electrocardiographic interpretation programs (17).
Therefore, it was of interest to apply neural networks for the interpretation of
bull’s-eye images. One advantage with the neural network approach is the
possibility to use Fourier transform components as inputs. These components
constitute an unbiased description of the image in contrast to the predefined
parameters commonly used in expert systems.

The choice of gold standard
Coronary angiography is considered to be the appropriate gold standard for

the diagnosis of CAD. However, myocardial scintigraphy can provide additional
information of clinical importance (18). For example, the extent and severity of
ischemia as reflected by the myocardial scintigraphy provide prognostic
information in patients with known CAD.

We used coronary angiography as gold standard because this provides an
independent reference in the comparison of network and human experts. The
results show that artificial neural networks can classify scintigrams in search for
CAD with angiography as gold standard. We believe that networks also could
classify scintigrams in search for ischemia using human experts as gold standard.

Conclusions
We found it possible to develop a computer-based method to classify

myocardial perfusion bull’s-eye images with performance as good as or better
than a human expert. Artificial neural networks can detect CAD in myocardial
bull’s-eye scintigrams with such a high accuracy that the application of neural
networks as clinical decision support tools appears to have significant potential.
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