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AbstratMotivation: Aligning protein strutures is a highly relevant task. It enables the studyof funtional and anestry relationships between proteins and is very important for ho-mology and threading methods in struture predition. Existing methods typially onlypartially explore the spae of possible alignments and being able to eÆiently handlepermutations eÆiently is rare.Results: A novel approah for struture alignment is presented, where the key ingre-dients are: (1) An error funtion formulation of the problem simultaneously in terms ofbinary (Potts) assignment variables and real-valued atomi oordinates. (2) Minimiza-tion of the error funtion by an iterative method, where in eah iteration a mean �eldmethod is employed for the assignment variables and exat rotation/translation of atomioordinates is performed, weighted with the orresponding assignment variables. Theapproah allows for extensive searh of all possible alignments, inluding those involvingarbitrary permutations. The algorithm is implemented using a C�-representation of thebakbone and explored on di�erent protein struture ategories using the Protein DataBank (Pdb) and is suessfully ompared with other algorithms. The approah performsvery well with modest CPU onsumption and is robust with respet to hoie of param-eters. It is extremely generi and exible and an handle additional user-presribedonstraints easily. Furthermore, it allows for a probabilisti interpretation of the results.
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IntrodutionAligning protein strutures is a subjet of utmost relevane. It enables the study of fun-tional relationship between proteins and is very important for homology and threadingmethods in struture predition. Furthermore, by grouping protein strutures into foldfamilies and subsequent tree reonstrution, anestry and evolutionary issues may getunraveled.Struture alignment amounts to mathing two 3D strutures suh that potential ommonsubstrutures, e.g. �-helies, have priority. The latter is aomplished by allowing forgaps in either of the hains. Also, the possibility of permuting sites within a hain maybe bene�ial. At �rst sight, the problem may appear very similar to sequene alignment,as manifested in some of the voabulary (gap osts et.). However, from an algorithmistandpoint there is a major di�erene. Whereas sequene alignment an be solved withinpolynomial time using dynamial programming methods (Needleman & Wunsh, 1971),this is not the ase for struture alignment sine rigid bodies are to be mathed. Hene,for all struture alignment algorithms the sope is limited to high quality approximatesolutions.Existing methods for struture alignment fall into two broad lasses, depending uponwhether one (1) diretly minimizes the inter-atomi distanes between two strutures or(2) minimizes the distane between substrutures that are either preseleted or suppliedby an algorithm involving intra-atomi distanes.One approah within the �rst ategory is the iterative dynamial programming method(Laurents et al., 1993; Gerstein & Levitt, 1996), where one �rst omputes a distane ma-trix between all pairs of atoms (e.g. C�) forming a similarity matrix, whih by dynamialprogramming methods gives rise to an assignment matrix mimiking the sequene align-ment proedure. One of the hains is then moved towards the other by minimizing thedistane between assigned pairs. This method does not allow for permutations. Anotherinter-atomi approah is pursued in Faliov and Cohen (1996), where the area ratherthan distanes between two strutures is minimized.In Holm and Sander (1993) the approah is di�erent. Here one ompares distane ma-tries within eah of the two strutures to be aligned, whih provide information aboutsimilar substrutures. The latter are subsequently mathed. A similar framework isused in Gibrat et al. (1996) and also in Lu (2000). Not surprisingly, in Holm and Sander(1993), Gibrat et al. (1996) and Lu (2000) permutations an in priniple be dealt with.There are implementation issues shared by both methodologies above. One is strutureenoding (C� and/or C� of the hains). For many omparisons C� appears to be suÆ-ient, whereas in some ases C� is needed. Also, the hoie of distane metri is a subjet1



of onern in order to avoid the inuene of outliers.The iterative dynamial programming method (Gerstein & Levitt, 1996) has been exten-sively assessed for bakbone strutures (Gerstein & Levitt, 1998) from the Sop (Hub-bard et al., 1997) database, in whih protein strutures have been lassi�ed by visualinspetion. Some omparisons with Sop have also been performed (Matsuo & Bryant,1999) using the method in Gibrat et al. (1996).Here we present a novel approah, whih shares some of its philosophy from the iterativedynamial programming method (Gerstein & Levitt, 1996). Its key ingredients are: (A)An error funtion formulation of the problem simultaneously in terms of binary (Potts)assignment variables and real-valued atomi oordinates and (B) minimization of theerror funtion by an iterative method, where eah iteration ontains two steps:1. A mean �eld proedure for minimizing with respet to the assignment variables.2. Exat rotation and translation of atomi oordinates weighted with the orrespond-ing assignment variables.The approah, whih is very general, has some very appealing properties:� Impliit omplete exploration of the entire spae of alignments, whih allows forarbitrary permutations. To our knowledge, no other approah has this feature.� Probabilisti interpretation of the results. This feature is present without tediousMonte Carlo estimates sine the algorithm is deterministi. Among other things,this implies that the approah is less sensitive to the hoie of distane metri, sinethe distanes are weighted with fuzzy numbers.� With its generality, almost arbitrary additional onstraints are easily inorporatedinto the formalism inluding di�erent funtional forms of gap penalties.The approah is tested using C�-representation of bakbones, by omparing the resultswith the approahes of Gerstein and Levitt (1996) and Holm and Sander (1993) as im-plemented in the Yale Alignment Server and Dali respetively and in one instanealso with Gibrat et al. (1996) (Entrez). In hoosing protein pairs to align we fol-lowed Gerstein and Levitt (1998) to a large extent. In Gerstein and Levitt (1998) pairswith marginal sequene overlap but where eah protein in a pair belongs to the sameSop superfamily and therefore have a similar struture were piked for assessment. Weseleted pairs from a varied seletion of the families used in Gerstein and Levitt (1998)to test our algorithm: 2



� Dihydrofolate Redutases (�=�)� Globins (all-�)� Plastoyanin/azurin (all-�)� Immunoglobulins (all-�)In addition, we test the permutation apaity of our approah, by aligning:� Permuted proteins (winged helix fold)When assessing the algorithm, we limit ourselves to a ore version, where C� degreesof freedom are not inluded. Also, no post-proessing of the results is done. We defersuh elaborations and others to forthoming publiation. Nevertheless, the ore versionof our approah is already very ompetitive even for hains, where permutations arenot needed. For the latter ase, the other algorithms ould not be tested using theorresponding WWW-servers. In the instanes, where we have tested it for this kind ofproblems, it also performs well.The algorithm is implemented in C++. Given its generality and power, the CPU demandis quite modest { it sales like the hain lengths squared and on the average requires afew seonds on a Pentium 400MHz PC.MethodsThe AlgorithmIn what follows we have two proteins with N1 and N2 atoms to be struturally aligned.This is aomplished by a series of weighted rigid body transformations of the �rst hain,keeping the seond hain �xed. We denote by xi (i = 1; :::; N1) and yj (j = 1; :::; N2) theatom oordinates of the �rst and seond hain, respetively. The phrase "atom" will beused throughout this paper in a generi sense { it ould represent individual atoms butalso groups of atoms. In our appliations it will mean C�-atoms along the bakbone. Asquare distane metri between the hain atoms is used,d2ij = jxi � yjj2 (1)but the formalism is not on�ned to this hoie.We start by disussing the enodings and error funtion and then we present a methodfor minimizing the latter.The Gapless Case. For pedagogial reasons, we start o� with the gapless ase with3



N1 = N2. We de�ne binary assignment variables sij suh that sij = 1 if atom i in onehain mathes j in the other and sij = 0 otherwise. Sine every atom in one hain mustmath one atom in the other, the following onditions must be ful�lled:N1Xi=1 sij = 1 j = 1; : : : ; N2 (2)N2Xj=1 sij = 1 i = 1; : : : ; N1 (3)A suitable error funtion to minimize subjet to the above onstraints (Eqs. (2,3)) isEhain = N1Xi=1 N2Xj=1 sijd2ij (4)where the spatial degrees of freedom, xi, are ontained in the distane matrix d2ij. Thuswhenever sij=1 one adds a penalty d2ij to Ehain. Note that Eq. (4) is to be minimizedboth with respet to the binary variables sij and the real-valued oordinates xi.The Gapped Case. Allowing for gaps in either of the hains is implemented by extend-ing sij to inlude 0-omponents in a ompat way; si0 = 1 and s0j = 1 if an atom (i or j)in one hain is mathed with a gap in the other and vie versa. Hene, gap positionsare not represented by individual elements in sij; rather the gap-elements orrespond toommon sinks. The matrix S, with elements sij, ontaining gap-elements is shown inEq. (5).
S = 0BBBBBBBBBB�

s01 s02 ::: s0N2s10 s11 s12 ::: s1N2s20 s21 s22 ::: s2N2:::sN10 sN11 sN12 :::: sN1N2
1CCCCCCCCCCA (5)

Some aution is needed when generalizing Eqs. (2,3) to host gaps, sine the elements ofthe �rst row and olumn (gap-mappings ontaining the index 0) in Eq. (5) di�er fromthe others in that they need not sum up to 1. Hene Eqs. (2,3) beomesN1Xi=0 sij = 1; j = 1; : : : ; N2N2Xj=0 sij = 1; i = 1; : : : ; N1 (6)
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where the �rst ondition an be rewritten asN1Xi=1 sij = 1 or N1Xi=1 sij = 0; j = 1; : : : ; N2 (7)The enoding (sij) of mathes and gaps is illustrated in Fig. 1 with a simple example.
i

j

S0BBBBBBBBBBBB�
0 0 1 1 1 1 0 0 1 00 1 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 1 0 01 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCAFigure 1: A simple example of the assignment matrix S (right) orresponding to the mathing of thetwo toy hains (left).Assuming a onstant penalty per inserted gap one has the error funtionE = Ehain + N1Xi=1 �(1)i si0 + N2Xj=1�(2)j s0j (8)where �(1)i is the ost for mathing atom i in the �rst hain with a gap in the seondhain, and similarly for �(2)j . The position dependene of the gap osts, �(1)i and �(2)j ,originates from the fat that it is desirable not to break �-helix and �-strand strutures.In Eq. (8) the gap penalties are proportional to gap lengths. In sequene alignment itis onjetured that gap penalties onsist of two parts; a penalty for opening a gap andthen a penalty proportional to the gap length. As in Gerstein and Levitt (1996), wewill for struture alignment here adopt the same gap ost philosophy, i.e. �(1)i and �(2)jfor opening a gap and a position-independent Æ per onseutive gap. Hene, Eq. (8)generalizes to E = Ehain + N1Xi=1 �(1)i si0 + N2Xj=1�(2)j s0j+ N1Xi=2 �Æ � �(1)i � si�1;0si0 + N2Xj=2 �Æ � �(2)j � s0;j�1s0j (9)where produts like si�1;0si0 are 1 if two adjaent atoms are mathed to gaps.5



Minimization. Next we need an eÆient proedure for minimizing E with respetto both sij and xi subjet to the onstraints in Eqs. (6,7). As mentioned above, thisminimization problem is non-trivial due to the rigid body onstraint. A similar problemin terms of �tting strutures with relevane fators was probed in Ohlsson et al. (1992)for trak �nding problems with a template approah using the mean �eld approximation.Here we will adopt a similar approah.In our formulation, the inherent optimization diÆulty resides in the binary part (sij)of the problem. Hene, minimizing Eq. (9) using a simple updating rule for sij willvery likely yield poor solutions due to loal minima. Well known stohasti proeduressuh as simulated annealing (SA) (Kirkpatrik et al., 1983) for avoiding this are tooostly from a omputational standpoint. In the mean �eld (MF) approah (Peterson &S�oderberg, 1989), the philosophy behind SA is retained, but the tedious simulations arereplaed by an eÆient deterministi proess. The binary variables sij are then replaedby ontinuous mean �eld variables vij 2 [0; 1℄, with a dynamis given by iterativelysolving the MF equations for a dereasing set of temperatures T down to T0, where mostof the vij approah either 1 or 0. These ontinuous MF variables an evolve in a spaenot aessible to the original intermediate variables. The intermediate on�gurations atnon-zero T have a natural probabilisti interpretation.For sij satisfying Eq. (6), the MF equations for the orresponding vij readvij = euij=TN2Xk=0 euik=T ; i = 1; :::; N1 (10)where the fore uij is given by uij = � �E�vij (11)and is omputed by substituting sij with vij in E (Eq. (9)). Note that the desirednormalization ondition, Eq. (6),N2Xj=0 vij = 1; i = 1; :::; N1 (12)is ful�lled automatially in Eq. (10). The other ondition (Eq.(7)) is enfored by addinga penalty term E =  N2Xj=1[(N1Xi=1 vij)( N1Xk=1 vkj � 1)℄=  N1Xi=1 N1Xk 6=i N2Xj=1 vijvkj (13)
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where  is a parameter and the last equality follows from the fat that v2ij = vij for T=0.So far we have only looked at the assignment part when minimizing the error funtion.When updating the mean �eld variables vij, using the MF equations, the distane mea-sure d2ij is a �xed quantity. This orresponds to having the hains at �xed positions.However, we also want to minimize the distane between the two hains. Based on theprobabilisti nature of the mean �eld variables we propose to update the hain positionsusing the (fuzzy) assignment matrix V, with elements vij. This is done simultaneouslywith the updating of vij. Expliitly, one of the hains will be moved in order to minimizethe hain error funtion Ehain (Eq. (4)).The distane measure d2ij depends on the translation vetor a and the rotation matrixR,making a total of six independent variables. Let x0i be the oordinates of the translatedand rotated protein, i.e. x0i = a+Rxi, thenEhain = N1Xi=1 N2Xj=1 vij (a+Rxi � yj)2 (14)This minimization problem an be solved exatly with losed-form expressions for Rand a that minimizes Ehain (Neumann, 1937). It should be noted that this solution isrotationally invariant (independent of R) for the speial ase when the atoms in the twohains mathes eah other with the same weight, i.e. when vij = onstant for all i andj, whih is the ase for high T .In summary, for a dereasing set of temperatures T , one iterates until onvergene:1. The MF equations (Eq. (10)).2. Exat translation and rotation of the hain (Eq. (14)).We stress again that step 2 is done with the fuzzy MF assignment variables vij and notwith the binary ones, sij. After onvergene, vij are rounded o� to 0 or 1 and rms (root-mean-square-distane) is omputed for the mathing pairs. Algorithmi details an befound in the next subsetion.The fores uij entering Eq. (10) are proportional to d2ij (Eqs. (4,11)). It is the ratio d2ij=Tthat ounts. Hene, for large temperatures T , vij are fairly insensitive to dij and manypotential mathing pairs (i; j) ontribute fairly evenly. As the temperature is dereased,a few pairs (the ones with small dij) are singled out and �nally at the lowest T onlyone winner remains. One an view the situation as that around eah atom i one has aGaussian domain of attration, whih initially (large T ) has a large width, but graduallyshrinks to a small �nite value.The fuzziness of the approah is illustrated in Fig. 2, where the evolution of vij, as T islowered, is shown for parts of the �rst helies of 1ECD and 1MBD (see next setion)7



together with snap-shots of the orresponding hain setions. At high T all vij are similar;all potential mathes have equal probability. At lower T , several vij have approahed0 or 1 and the movable hain is moving in the right diretion. At yet lower T , notethat a few vij onverge later than the majority. These are in this example related to themathing of the last atom in one of the hains. This atom has two potential andidatesto math resulting in a number of vij that onverge last.(a) (b)
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Figure 2: Illustration of the fuzziness of the approah. The alignment shown is for 10 atoms in the �rsthelies in the proteins 1ECD (blue) and 1MBD (red). (a) Evolution of all the 120 vij as a funtion ofiteration time � (T is lowered with �). (b) Positions of the atoms at � = 1. For high T every atom ina protein feels all the atoms in the other protein and the problem is rotationally invariant. () � = 12;most of the relevant mathings are foring the system to move in the right diretion. (d) � = 50; the�nal assignments are done. The di�erent snapshots are presented using di�erent projetions. Some vijapproah 0 or 1 rather late and they are oloured green. These vij are related to the atom at the endof the 1MBD segment, whih also is oloured green, and as an be seen in () the diÆulty is whetherto align this atom to the last or seond last atom in the 1ECD segment.
8



ImplementationHere we give a very ondensed, but yet self-ontained and detailed desription of thealgorithm and the parameters involved, suh that the results of this paper are repro-duible.Parameters. Two kind of parameters are used; the ones related to enoding of theproblem () and iteration dynamis (�), where � governs the annealing shedule (seebelow), and the ones speifying gap osts (�, Æ). The same set of parameters an beused for most of the pairs (see Table 1); the algorithm is remarkably stable.Protein Family �  � �sheet �helix Æ�=�, all-� 0.8 0.065 0.10 1:5� 1:5� �=2Plastoyanin/azurin 0.8 0.035 0.10 2:0� 2:0� �=5Immunoglobulins 0.8 0.040 0.15 2:0� 2:0� �=5Winged helix fold 0.8 0.070 0.20 2:0� 2:0� �=5Table 1: Parameters used in the algorithm. The �rst family involves 27 pairs, whereas the others oneeah.Initialization. An initialization of the hains is made prior to the mean �eld alignment.First both hains are moved to their ommon enter of mass. For the random initializa-tion, this move is then followed by a random rotation of one of the hains. Most of thetimes, however, a sequential initialization is used that onsists of minimizing Eq. (4) us-ing a band-diagonal assignment matrix S. This orresponds to a situation where, on theaverage, atom i in one of the hains is mathed to atom i in the other. If not expliitlymentioned, sequential initialization is used for all the protein pairs in this paper.Iteration Steps. The shortest hain is always hosen as the one that is moved (xi).The mean �eld variables vij are updated aording to Eq. (10) where, in order toimprove onvergene, the derivatives in Eq. (11) are replaed by �nite di�erenes (seee.g. Ohlsson and Pi (1997)). This update equation aounts for all mean �eld variablesexept for the �rst row of V, whih is updated aording tov0j = 1� N1Xi=1 vij; j = 1; :::; N2 (15)The algorithmi steps are shown in Fig. 3. After onvergene, no post proessing isapplied for the results in the next setion. 9



1. Initialization.2. Resale oordinates suh that the largest distane between atoms within thehains is unity.3. Initiate all vij lose to 1=max(N1; N2) (randomly).4. Initiate the temperature (e.g. T = 2).5. Randomly (without replaement) selet one row, say row k.6. Update all vkj ; j = 0; :::; N2 aording to Eq. (10).7. Repeat items 5� 6 N1 times (suh that all rows have been updated one).8. Repeat items 5� 7 until no hanges our(de�ned e.g. by 1=(N1N2)Pij jvij � v(old)ij j � 0:0001).9. Rotation and translation of the shortest hain using the fuzzy assignment matrixV .10. Derease the temperature, T ! �T .11. Repeat items 5� 10 until all vij are lose to 1 or 0(de�ned e.g. by 1=N1Pij v2ij � 0:99).12. Finally, the mean �eld solution is given by the integer limit of vij , i.e.for eah row i, i = 1; :::; N1 selet the olumn j� suh that vij� is the largestelement for this row. Let sij� = 1 and all other sij = 0 for this row.Figure 3: Algorithmi steps.ResultsTo test the quality of our alignment algorithm, we have ompared alignments of proteinpairs with results from other automati proedures. For most of the tested pairs, eahprotein belongs to the same Sop superfamily. The goal here is not a full investigationof all families but rather to explore a limited set with representative variation. Pairs werepiked from a seletion of the families investigated in Gerstein and Levitt (1998). Ourhoie of pairs is essentially based on two riteria. First, the pairs should have diversestrutures, and in partiular inlude all-�, all-�, and �/� proteins. Seond, in Gersteinand Levitt (1998) some families are onsidered to be very easy, easy and diÆult to align,respetively, and we inluded pairs from all these ategories. In addition we have testedthe algorithm on ases where permutations are needed.Our results are ompared with the Yale Alignment Server (http://bioinfo.mbb.yale.edu/align/) and Dali (http://www2.ebi.a.uk/dali/). The Yale server applies postproessing to its alignments by removing aligned pairs with too large root-mean-square-distane (rms) in an iterative manner subjet to a termination riteria. A similar proe-10
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Figure 4: rms and N orresponding to Table 2. The Yale data orrespond to no post proessing (seetext).dure is of ourse possible in our approah, but we have hosen at this stage to keep thealgorithm lean. In the omparisons below we have for the Yale server quoted resultsboth before and after the post-proessing.Unless otherwise stated, proteins are in what follows denoted by their Pdb (Bermanet al., 2000) identi�er, and in the ase of hains or parts of hains with their Sopdomain label. A summary of the results in terms of rms and the number of alignedatoms (N) is shown in Table 2 and in Fig. 4. Detailed omments upon these results andsome additional ones an be found below.With regard to the general performane one must keep in mind that it is not straight-forward to assess alignment algorithms in terms of e.g. rms and N , sine there are noobvious �gure-of-merits. It is interesting to notie though that when inspeting alignedore regions in detail, we are lose to the Yale alignments but in general with a lowerrms. However, in suh omparisons, we di�er more from Dali. The Yale algorithmhas been subjet to omparison with Sop lassi�ations using a multiple alignmentproedure (Gerstein & Levitt, 1998), giving its and our alignments a higher redibility.Dihydrofolate Redutases (�=�). These proteins belong to the Sop lass �=�, whihontains �- and �-proteins that have mainly parallel beta sheets. They are onsideredvery easy to align (Gerstein & Levitt, 1998). If we ompare alignments of ore strutureparts using the three methods we �nd that they all essentially agree. However, one notesthat the Yale results are very sensitive to the post proessing.11



Protein family Protein Pair Yale Dali Lundrms N rms N rms NDihydrofolate 1DHFa - 8DFR 1.7 (0.7) 182 (182) 0.7 182 0.7 182Redutases 1DHFa - 4DFRa 2.7 (1.2) 155 (130) 2.0 155 1.9 1541DHFa - 3DFR 2.5 (1.2) 159 (143) 1.7 158 1.7 1598DFR - 4DFRa 2.8 (1.3) 156 (131) 2.1 151 1.9 1548DFR - 3DFR 2.6 (1.3) 160 (146) 2.0 160 1.7 1604DFRa - 3DFR 2.4 (1.1) 157 (140) 1.5 152 1.5 153Globins 2HHBa - 2HHBb 2.3 (1.2 ) 139 (129) 1.5 139 1.4 1392HHBa - 2LHB 2.7 (1.6) 131 (123) 1.8 128 1.9 1302HHBa - 1MBD 2.4 (1.5) 141 (138) 1.5 139 1.5 1412HHBa - 2HBG 2.4 (0.8) 138 (105) 1.7 138 1.6 1372HHBa - 1MBA 2.9 (2.2) 138 (134) 2.3 136 2.2 1382HHBa - 1ECD 3.1 (2.2) 130 (126) 2.3 129 2.2 1302HHBb - 2LHB 2.5 (1.3) 136 (126) 1.7 134 1.6 1342HHBb - 1MBD 2.3 (1.4) 145 (138) 1.6 145 1.4 1432HHBb - 2HBG 2.4 (1.4) 136 (125) 2.0 135 1.6 1332HHBb - 1MBA 3.0 (2.2) 140 (137) 2.3 138 2.2 1392HHBb - 1ECD 2.8 (2.2) 136 (134) 2.3 129 2.1 1342LHB - 1MBD 2.4 (1.0) 137 (121) 1.4 135 1.4 1362LHB - 2HBG 2.7 (1.5) 131 (119) 2.0 128 2.1 1302LHB - 1MBA 2.7 (1.8) 138 (130) 1.9 135 1.9 1322LHB - 1ECD 2.7 (1.9) 130 (127) 2.0 128 1.9 1281MBD - 2HBG 2.5 (1.6) 139 (130) 2.1 139 1.8 1371MBD - 1MBA 2.5 (1.7) 143 (137) 1.9 142 1.8 1421MBD - 1ECD 2.2 (1.6) 136 (134) 1.9 136 1.6 1362HBG - 1MBA 2.9 (2.2) 139 (136) 2.4 137 2.2 1352HBG - 1ECD 3.3 (2.5) 128 (125) 2.6 129 2.4 1251MBA - 1ECD 2.8 (1.7) 134 (125) 1.9 133 1.9 135Plastoyanin/azurin 1PLC - 1AZU 4.7 (2.9) 91 (85) 2.6 86 2.1 78Immunoglobulins 7FABl2 - 1REIa 3.5 (2.6) 83 (79) 2.6 78 3.0 89Table 2: The root-mean-square-distane (rms) and the number of aligned residues (N) from the align-ment of di�erent protein pairs. The results are presented for several automati alignment proedures;Lund refers to this work. For Yale the numbers within parenthesis refer to after post proessing (seetext).
Globins (all-�). In the all-� Sop lass we partiularly study a set of globin proteins.In general, we get lower rms than the other algorithms for the same number of alignedresidues. When omparing alignments from the three algorithms we �nd that an im-portant aspet of our algorithm is manifested { allowing for permutation of individualatoms. The reason for this is that to optimally align seondary strutures it is oftenbene�ial to have a few permuted residues in loops between the seondary strutures.If we again ompare the ore parts of the alignments from the three algorithms we �ndthat they agree on a large fration of the parts.12



Plastoyanin/azurin (all-�). All-� proteins are diÆult to align if one only takesbakbone oordinates (C� or C�) into aount, even though using C� instead of C�oordinates, in general, improves the results. As an initial example of all-� proteins wehave looked at plastoyanin versus azurin. Even though this alignment is slightly morediÆult than the previous ases, all three methods give similar rms and N and they allagree on the alignment of a majority of the ore parts. For this example several restartswere performed with random initialization.Immunoglobulins (all-�). A more diÆult example of all-� proteins is immunoglob-ulins. We align the domain 7FABl2 with the hain 1REIa and �nd that we an �ndalignments with low rms that look good. However, if we investigate the alignment indetail we �nd that atoms in all ore regions, exept one, are misaligned. This is alsothe ase in Gerstein and Levitt (1998), where the same alignment is investigated. Toget the ore regions orretly aligned in Gerstein and Levitt (1998) they improve theirmethod and take side hain orientation into aount. We expet that this is the asefor our method too. When aligning strands using only C� oordinates, strands in thetwo proteins are often mathed satisfyingly to one another while the individual atomsare aligned suh that one strand is translated with respet to the other. It is thereforeobvious that side hain orientation is very important when aligning strands. For thisexample several restarts were performed with random initialization.Permuted proteins { winged helix fold. Finally we look at permuted versions ofsimilar folds. We ompare two DNA binding domains related to transription regulation.The ompared domains both have the winged helix fold but one of them has the seondarystrutures in a irularly permuted order. This is a ase where iterative dynamialprogramming algorithms will fail. We look at 1LEA and ompare it to the Entrez-Mmdb (Marhler-Bauer et al., 1999) strutural domain 4 in hain B of 1XGN. This partof 1XGN is lassi�ed as a irularly permuted winged helix fold in Sop. In the Entrez-Mmdb database, whih usesVast (http://www.nbi.nlm.nih.gov/Struture/VAST/) foralignments, 1XGNb4 is listed as a low priority strutural neighbour to 1LEA, eventhough Vast does not allow for permutations of seondary struture. If one looks atthe atual alignment one �nds that the permuted seondary strutures are not aligned.In Figure 5 we ompare our alignment with Vast. We show the sequential parts of ouralignment and in partiular all parts with seondary struture are shown. Vast alignsonly 39 residues in this omparison, while we align 60. We note that we get all the 39of the aligned residues of Vast but that we in addition align the sheet at the end of1LEA with the sheet at the beginning of the domain in 1XGNb. This demonstratesthe importane of having a proedure that takes permutations into aount, whih ourmethod does. Otherwise, important similarities between protein strutures will not befound. For this example several restarts were performed with random initialization.
13



************** ******* ******************5 18 26 59 65 71| | | | | |1LEA TARQQEVFDLIRDH PTRAEIAQRLGFRSPNAAEEHLKALARKGVIEIV -GIRLLQE1XGNb4 VAQARFLLAKIKRE FAYRWLQN-D-M-PEGQLKLALKTLEKAGAIYGY IYMYVRDV| | | | | |216 229 235 265 206 212Figure 5: Alignment of 1LEA against the Entrez-Mmdb domain 1XGNb4. The '*' denotes atomsalso aligned by Vast. 1XGNb4 is a irularly permuted version of 1LEA and our method �nds thisand aligns the sheet at the end of 1LEA with the sheet at the beginning of the domain in 1XGNb.DisussionA new approah to struture alignment has been presented and explored. It is basedupon an error funtion enoding in terms of both binary assignment variables and real-valued atom oordinates. The enoding allows for an extensive searh through all possiblealignments, inluding the ones involving arbitrary permutations.The error funtion is eÆiently minimized using a mean �eld approximation of the assign-ment variables and exat translation/rotation of the atom oordinates. As a by-produtof this approximation, a probabilisti interpretation of the result is available withouttedious stohasti simulations. The approah is not sensitive to the hoie of distanemetri, and hene to a large extent ignores outliers.Despite some oneptual similarities with the iterative dynamial programming method(Gerstein & Levitt, 1996), our approah is probabilisti and more general. Also, andmaybe more importantly, it is quite di�erent sine permutations are allowed from theoutset. For the latter reason, the algorithm in Gerstein and Levitt (1996) annot bederived as a speial ase in any limit.The method is readily extended to handle more detailed hain representations (e.g. side-hain orientation) and user-provided onstraints of almost any kind.The approah is evaluated using pairs of protein hains hosen to represent a wide varietyof situations and the resulting alignments are suessfully ompared with other methodsthat are available on WWW-servers. This evaluation is done using C�-representationsof the hains.Despite being very exible, generi and overing the entire spae of alignments themethod is on the average as fast as Gibrat et al. (1996), slightly slower than Gersteinand Levitt (1996) and signi�antly faster than Holm and Sander (1993). Also, it is very14
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