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Summary

The purpose of this study was to develop a method based on artificial neural
networks for interpretation of captopril renography tests for the detection of
renovascular hypertension caused by renal artery stenosis and to assess the value of
different measurements from the test. A total of 250 99mTc-MAG3 captopril
renography tests were used in the study. The material was collected from two
different patient groups. One group consisted of 101 patients who also had
undergone a renal angiography. The angiographies, which were used as gold
standard, showed a significant renal artery stenosis in 53 of the 101 cases. The
second group consisted of 149 patients, who’s captopril renography tests all were
interpreted as not compatible with significant renal artery stenosis by an experienced
nuclear medicine physician. Artificial neural networks were trained for the diagnosis
of renal artery stenosis using eight measures from each renogram. The neural
network was then evaluated in separate test groups using an eightfold cross
validation procedure. The performance of the neural networks, measured as the area
under the receiver operating characteristic curve, was 0Æ93. The sensitivity was 91%
at a specificity of 90%. The lowest performance was found for the network trained
without use of a parenchymal transit measure, indicating the importance of this
feature. Artificial neural networks can be trained to interpret captopril renography
tests for detection of renovascular hypertension caused by renal artery stenosis. The
result almost equals that of human experts shown in previous studies.

Introduction

Renal angiography is the gold standard for diagnosing renovas-

cular disease. It is an invasive method and not suitable for

screening. The most accurate non-invasive method to diagnose

significant renal artery stenosis causing renovascular hyperten-

sion (RVH) is the captopril renography test (CRT) (Elliott et al.,

1993; Fommei et al., 1993; Pedersen et al., 1996; Helin et al.,

1998), which is a well-established technique since almost two

decades. A consensus report (Taylor et al., 1996) and procedure

guidelines (Taylor et al., 1998) have been presented to assist

nuclear medicine physicians in performing and interpreting the

outcome of the test. These guidelines for interpretation of the

CRT are based on the possibility to compare the captopril study

to a baseline study in case of an abnormal CRT. No consensus,

however, has yet been reached for interpretation of the

individual output features from the CRT. It is often possible to

perform only the captopril study and there are no definite

guidelines to determine when a baseline study is necessary.

According to one report (Ramsay et al., 1997) clinicians

sometimes rely on other factors than the CRT when determining

who has a possible symptomatic stenosis and may benefit from

intervention, despite the fact that CRT is both sensitive and

specific for RVH. It is also possible that some clinics use their

own diagnostic criteria that are not statistically evaluated.

Krijnen et al. (2002) investigated the interobserver agreement

on CRT and they concluded that differences in the performance

of CRT found between studies could be explained by this

variability. The assessment of cortical retention and pelvic

retention by visual inspection of the images showed the largest

variability.

Artificial neural networks have been used for the purpose of

diagnosis in nuclear medicine, for example ischaemic heart

disease, pulmonary embolism and Alzheimer’s disease (Page

et al., 1996; Lindahl et al., 1999; Holst et al., 2001). The

networks have proved to be well suited to solve pattern
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recognition tasks and it has been shown that even an

experienced expert benefit from the advice of artificial neural

networks (Lindahl et al., 1999).

The purpose of this study was to develop a method based on

artificial neural networks for interpretation of CRTs for the

detection of RVH caused by renal artery stenosis and to assess

the value of different measurements from the test.

Methods

Patient selection

This study is based on technetium)99m-mercaptoacetyltri-

glycine (99m-Tc-MAG3) CRTs performed on patients suspected

to suffer from RVH. The material was collected from two

different patient groups. One was part of the Swedish Society of

Nuclear Medicine’s Captopril Renography Project. It comprised

105 tests performed 1995–1999 at a number of hospitals in

Sweden according to guidelines proposed by the Swedish

Society and very similar to the procedure guideline published by

Society of Nuclear Medicine USA (Taylor et al., 1998). Each

patient in this group has also undergone a renal angiography.

Three tests were excluded because the evaluations of the

renographies were not complete and one because of a non-

conclusive angiography report. The criteria used for a positive

angiography was a narrowing of the lumen diameter of more

than 70% or signs of fibro-muscular dysplasia on one or both of

the renal arteries. A positive angiography was found in 53 of the

101 tests (Fig. 1).

The second group comprised all patients who performed a

CRT during a 12-month period 1998 at Linköping University

Hospital. One experienced nuclear medicine physician inter-

preted all tests and included in our material was the 149 cases

where he ruled out significant renal artery stenosis. There was a

wide range of renal function in this group of patients, ranging

from 20 to 570 ml min)1 1Æ73 m)2 BSA as calculated as camera

based MAG3 clearance (Granerus & Moonen, 1991). These

patients did not undergo renal angiography and the interpreta-

tion of the expert was used as the gold standard. At a follow-up

5 years after the CRTs none of the 149 patients had undergone

renal angiography.

The total material comprised 250 CRTs, 53 positive and 197

negative for renal artery stenosis. All of the patients had two

native kidneys at the time.

The captopril renography test

Although the CRTs were performed at different hospitals a

common protocol was recommended and the following

minimal requirements were agreed on. The patients should be

hydrated with 7 ml kg)1 of body weight and 25 mg of

captopril administered orally 60 min prior to the study. 99m-

Tc-MAG3, 50–100 MBq, should be injected with the patient

lying in the supine position on the gamma camera detector. The

acquisition ought to be 20 min and 10-s frames acquired at least

in the first part of the study. Experienced operators should

process the images. The following measurements from the CRT

were used:

(i) relative function;

(ii) time to highest activity (Tmax);

(iii) activity after 20 min to highest activity (min 20/max);

(iv) Pelvic appearance time (PAT).

A general purpose collimator was used and acquisition was

made in 128 · 128 matrix. PAT was assessed by one experi-

enced nuclear medicine physician who determined in which

1-min image the isotope first was visible in the renal pelvis. Four

measurements were used for each of the right and left kidney,

i.e. in total eight measurements. The artificial neural networks

does not make use of normal limits for the measurements and

such limits were therefore not defined.

Artificial neural networks

Artificial neural networks were used as classifiers for the

detection of RVH. The analysis was done per patient, i.e. the

classifiers computed the probability of RVH for each patient,

thereby including left, right and bilateral stenosis. Each classifier

consisted of an ensemble of single artificial neural networks. The

individual members of the ensemble were standard multi-layer

perceptrons (Rumelhart & McClelland, 1986) with one hidden

layer consisting of four nodes and one output node that was

used to encode the presence of RVH or not. Each multi-layer

perceptron was trained using gradient descent applied to a cross-

entropy error function. The gradient descent method was

augmented with a traditional momentum term and a Langevin

extension (Rögnvaldson, 1994). To avoid over-training a

weight elimination (Hanson & Pratt, 1989) regularization term

was utilized. The output of the neural network ensemble was

computed as the mean of the output of the individual members

in the ensemble. In this study, an ensemble size of 100 multi-

layer perceptrons was used.

In order to assess the relative importance of the different

measurements from each CRT, four networks were trained and
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Figure 1 Severity of renal artery stenosis in the 101 patients who had
undergone renal angiography. Black bars indicate the group of 53
patients with significant stenosis.
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evaluated using the same material but different inputs. For each

of these networks, one of the four types of CRT measurements

were omitted, for example the Tmax measurements for the right

and left kidney. The performance of the neural network

classifiers was measured as the area under the receiver operating

characteristic (ROC) curve. All figures are based on eightfold

cross-validation which was used as the technique to estimate the

generalization performance. To find statistical significant differ-

ences between ROC areas, P-values were computed using a

bootstrap method (Wehrens et al., 2000).

Results

The performance of the neural network fed with all measure-

ments from each CRT had an area under the ROC curve of 0Æ93
(Fig. 2). The sensitivity was 91% at a specificity of 90%. The

networks trained without relative function, Tmax, and min 20/

max showed areas under the ROC curves of 0Æ94, 0Æ94, and
0Æ92, respectively. The lowest area under the ROC curve, 0Æ89,
was found for the network trained without the PAT measure-

ments. This network was significantly worse than the network

trained without Tmax measurements (P ¼ 0Æ02). The other

differences between the networks were not statistically signifi-

cant.

Discussion

Main findings

This study shows that it is possible to use an artificial neural

network to interpret CRTs in the detection of RVH. The accuracy

is about as high as for human experts shown in other studies

(Gijsbert & deBruyn, 1991; Mann et al., 1991; Setaro et al.,

1991; Roccatello et al., 1992; Fommei et al., 1993), i.e.

sensitivities and specificities in the region of 90%, respectively.

It has been shown before by Hamilton et al., 1996, that it could

be done for transplant kidneys. This is to our knowledge the first

time it has been shown to diagnose RVH in patients with native

kidneys. Furthermore, it is shown that the performance is high

without the use of a baseline study.

One of the goals was to assess the value of different

measurements from the CRT. The simple PAT showed to be

the most important measurement and this finding indicates the

importance of the parenchymal transit measurements. This

feature was manually determined by an experienced nuclear

medicine physician, however, it could be more objectively

determined by deconvolution of cortical renograms and

calculation of the parenchymal transit time (PTT). The three

other types of measurements were standard features determined

from the renograms. This suggests the mandatory use of some

measurements of parenchymal transit could improve the

performance of CRT, whether interpreted by computers or

human experts. From a methodological point of view it is a

great advantage for this purpose to use a tubular secreted tracer

like MAG3 instead of a filtered tracer such as DTPA because of

more rapid excretion and higher concentration in the pelvic

urine. The higher counting statistics makes parameters like PAT

or PTT more easily determined.

Study limitation

The performance of artificial neural networks depends heavily

on the size and composition of the training database. The ideal

situation would be to have a large number of CRTs from patients

who all have undergone renal angiography. Because of the

already high accuracy of CRT, renal angiography is a seldom-

used investigation, especially for patients with a negative

outcome of the CRT. Therefore, our second patient group used

CRT interpreted by a human expert as gold standard rather than

angiography. We used this database to increase the number of

training examples. The CRT has, however, in many studies

proved to be highly specific for a negative test (Gijsbert &

deBruyn, 1991; Mann et al., 1991; Setaro et al., 1991; Roccatello

et al., 1992; Fommei et al., 1993) and indeed the negative 5-year

follow-up indicate that the expert interpretations were correct.

An more accurate gold standard than renal angiography

would be the outcome of intervention to determine if a

functional stenosis is present. This will give us the possibility to

predict if a patient would gain from angioplasty. That

information, however, was not available to us, but many

captopril studies show that the CRT is a good predictor of the

outcome (Gijsbert & deBruyn, 1991; Setaro et al., 1991;

Harward et al., 1995).

Conclusion

This study shows that it is possible to use artificial neural

networks for interpretation of CRTs in a wide range of renal

function. The results are similar to those of human experts

shown in earlier studies (Gijsbert & deBruyn, 1991; Mann et al.,

1991; Setaro et al., 1991; Roccatello et al., 1992; Fommei et al.,

1993), i.e. sensitivity and specificity in the region of 90%,

respectively.
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Figure 2 ROC curve presenting the performance of the neural networks
interpreting CRTs based on eight measurements from each test.
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