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1 Motivation and ResultsParticle physics contains many challenging feature recognition problems ranging from o�-line data analysisto low-level experimental triggers. In particular for the next generation of accelerators (LHC, SSC) theavailability of e�cient pattern recognition algorithms that can be executed in real-time will be crucial.The event rate at these machines is expected to be of the order of one event per 10-100 ns. One class offeature recognition problems is track �nding. This is a combinatorial optimization problem; given a set ofsignals reconstruct particle trajectories subject to smoothness constraints.Arti�cial neural network (ANN) techniques, or variations thereof, have shown great power in �nding goodapproximate solutions to di�cult optimization problems [1, 2, 3]. In refs. [4, 5] a neural approach waspursued for the track �nding problem with encouraging results with respect to solution quality for toy-sizedproblems. The basic idea is to assign a decision element (neuron) Sij between two signals i and j which isequal to 1 if i and j are connected and 0 otherwise. An energy function is constructed in terms of Sij suchthat smooth tracks with no bifurcations correspond to minima. In its "raw" form this approach requiresN2 degrees of freedom for N signals. This assumes full potential connectivity. In reality this is never thecase due to the locality of the problem; a track cannot pass too many pad-rows without giving rise to asignal. Also at high energies the curvature is limited, which constrains the connectivity in (��;��). Inref. [6] such realistic cuts on the degrees of freedom were made on real TPC data from the CERN ALEPHdetector. The performance in terms of quality of this ANN algorithm turns out to be compatible with theconventional one used in the ALEPH detector. With regard to execution speed the ANN approach is awinner, in particular for high multiplicity events [6]. Another local neural network inspired approach is tohave a rotor [7] associated with each signal interacting in such a way that smooth tracks [8] are promoted.This method, which still needs to be worked out in more detail, would only require N degrees of freedom.Even though the neural approach [4, 5, 6] seems to work very well it may not be the optimal way toproceed for the particle physics track �nding problem for the following reasons:1. It only solves the combinatorial optimization part of the problem; assigns signals to tracks. In realityone also needs to know the momenta corresponding the tracks. In the neural approach one then hasto augment the algorithm with some �tting procedure. It would be nice to have a algorithm thatdoes both things simultaneously.2. The neural approach is presumably more general than what is needed for this problem. The para-metric form of the tracks are known in advance - straight lines or helices. The network has no priorinformation about this. However, in other applications with no prior knowledge of the parametricform of the tracks, the very versatile ANN approach is the way to go4.3. The number of degrees of freedom needed to solve the a N signal problem is large even with theconnectivity restrictions imposed in refs. [5, 6]. For a problem with N signals and M tracks oneshould only need 0(M) degrees of freedom.4. As demonstrated in ref. [9] the neural approach is somewhat sensitive to noise. Again with priorknowledge of the parametric form one should be more robust with respect to noise.All these issues can be accounted for in a novel approach [10] based on so-called deformable templates [11]4In neural approaches there is of course always some prior knowledge or bias introduced in terms of penalty terms inenergy functions. 1



or elastic nets [3]. A very similar approach was independently pursued in ref. [9]. The strategy is to tryto match the observed events to simple parameterized models where the form of the models contains thea priori knowledge about the possible tracks - circles passing through the origin (the collision point).Tracking elementary features and grouping them coherently is not a problem unique to the particle physics.It is an important problem in computer vision in general. There are many additional applications, such asthe detection of incoming aircraft, but also interesting perceptual phenomena, such as those explored byGestalt psychologists [12, 13]. In some of these applications the parametric form is not known in advance.In those instances one is of course better o� with the non-prejudiced pure neuronic formulation [4, 5].The template approach is based on a global view on the track �nding problem, which is in line with howhumans solve the problem. On the other hand, conventional track �nding algorithms in particle physicslike the road�nder [14] are based on local optimization.The particle tracking problem consists of �tting smooth curves through a set of data points, correspondingto the location of sensor responses. An unknown subset of these data points correspond to sensor "noise"and should be unmatched. Our strategy is to match the observed events to simple parameterized models.Currently we assume that the possible tracks are circles passing through the origin (the collision point).This assumption is correct if the particles move in a constant magnetic �eld and with negligible ionizationlosses (such losses would lead to changes in the curvature). The approach can be modi�ed if necessary toallow for more complex paths. The formulation allows for some data points, hopefully those correspondingto sensor noise, to be unmatched. The mechanism involved is closely related to redescending M-estimatorsused in Robust Statistics [15]. For a discussion on this connection see ref. [16].Hough transforms [17] are used to provide initial conditions for the templates and to specify the number oftemplates required. Hough transforms are essentially variants of "histogramming" or "binning" techniqueswhich have previously been applied to particle tracking [18].It turns out that the deformable templates and the Hough transforms are not unrelated. In the lowtemperature limit one can show the Hough transform is a special case of the deformable template algorithm[10]. A somewhat opposite approach was taken by Gyulassy and Harlander [9] who started out from theHough transform and then generalized it to elastic nets or deformable templates.Deformable templates and Hough transforms complement each other nicely for this problem. The de-formable templates, with a deterministic annealing algorithm, give accurate �ne-scale matching and candecline to match certain points - but need a rough estimate for the number of tracks. Hough transformswould guarantee to get the correct answer for noiseless data and for an in�nitely small boxes in parameterspace - but will make errors otherwise. Hough transforms, however, can be used to hypothesize a numberof possible tracks which can be veri�ed, or rejected, by deformable templates.Some analytical support for this strategy comes from the work of De Veaux [20] on �tting data to a mixtureof two Gaussian distributions. His �tting criterion can be reformulated in terms of deformable templates.De Veaux proves mathematically that, for a su�cient amount of data, a binning technique will provide arough estimate for the parameters of the Gaussians which is su�ciently accurate to guarantee convergenceto the globally optimum solution for the deformable templates.The basic underlying idea of the deformable templates (or elastic arms) approach was briey presentedin ref. [10]. In this paper we develop this approach further with respect to theoretical understanding,extensions and implementation issues along the following lines:2



� A local variant of the Hough transform is introduced, which is less computational expensive thanthe standard one.� Both the Hough transform and the elastic arms approaches are extended to three dimensions. Itturns out that this gives better results with respect to disentangling tracks which are close in theprojected x̂ŷ-plane.� Non-magnetic (straight) tracks with di�erent origins are dealt with in a successful manner.� We demonstrate that the elastic arms algorithm easily deals with situations when it is initializedwith too many tracks from the Hough transform - extra tracks are either attracted to noise sparksor to other arms, which have settled. Both cases can be dealt with by a removal procedure after thealgorithm has settled.� An alternative derivation of the elastic arms approach based on performing maximum likelihoodestimation is given.� The role of the e�ective repulsion term (winner-takes-all) in the algorithm is well understood.� Phase transition properties of the algorithm are discussed.� When implementing the algorithm the domains of attraction for each arm can be limited to onehemisphere or less, which speeds up the computations.� Generic prescriptions for setting the parameters regulating convergence of the algorithm are given.This paper is organized as follows: Geometrical conventions and the metric used is found in Sect. 2. InSect. 3 we describe the classic Hough transform and the cost-e�ective local variant used in our approach.Sect. 4 contains the derivation of the deformable templates (elastic arms) algorithm. We also demonstratehow it gives rise to the Hough transform as a special case. Implementation issues and practical hints arediscussed in Sect. 5. together with numerical explorations using simulated DELPHI TPC data. Finally inSect. 6 the reader �nds a brief summary and outlook.2 Geometry and Metric2.1 Curved TracksThroughout this paper we work with a constant magnet �eld in the ẑ-direction, ~B = Bẑ. Furthermore,we neglect energy losses - all tracks are helices in the x̂ŷ-plane. In three dimensions a track a is thus aspiral emerging from the origin with emission angle �a in the x̂ŷ-plane, curvature �a and a parameter agoverning the longitudinal (non-curved) direction. In terms of these parameters a spiral is given byx = 1�a fsin(�a + sgn(�a)t) � sin �agy = 1�a f� cos(�a + sgn(�a)t) + cos �ag (1)z = at 3



where t 2 [0; �] corresponding to a half-spiral (this limitation, which corresponds to real life, is necessary inorder to avoid closed circles in the projected plane). We use � rather than r = 1=� to describe the curvaturesince the former is bounded in track-�nding situations where the detector de�nes a lowest possible helixradius.The minimal squared Euclidean distance Mia between a spiral a and a signal i with position (xi; yi; zi) isgiven by Mia = M (xy)ia +M (z)ia= 1�2a n1�p(�axi + sin �a)2 + (�ayi � cos �a)2o2 + (zi � at)2 (2)where t = �sgn(�a)�atan(�axi + sin �a�ayi � cos �a ) + �a� (3)We will later also apply the method to situations, where the events have been projected on to the x̂ŷ-plane(cf ref. [10]). In those cases, of course, only the �rst term in eq. (2) is kept (M (xy)ia ).2.2 Straight TracksOne might also want to consider situations with no magnetic �eld - straight tracks. In our case theseapplications, which are limited to two dimensions, are of two kinds. One is as above with a given vertex,in which case one has one parameter only, the emission angle �a in the equations describing the track. Theother application is when the vertex (x0; y0) is also an unknown to be determined. The general equationsfor this read x = x0 + t cos �ay = y0 + t sin �a (4)where t � 0.3 The Hough TransformAs a �rst step we need a method that provides us with the approximate number of tracks in an event andthe approximate parameter values for these arms. The Hough transform [17, 18] is appropriate for this. Inits original form one determines a curve in parameter space for a given signal (xi; yi; zi) corresponding toall possible tracks with a given parametric form it could possibly correspond to. All such curves belongingto the di�erent signals are "drawn" in parameter space. This space is then discretized and entries arehistogrammed - one divides parameter space up into boxes and counts the number of curves in each box.If the towers in the histogram exceeds thresholds in the parameter values (~�; ~�; ~) then the correspondingparameter values de�ne a potential track. Needless to say, if the granularity of this procedure is chosento be very small the computational requirements grows very rapidly. As will be shown in the next sectionthis Hough transform can be derived as a limit of the elastic arms algorithm.In ref. [10] a variant of the Hough transform was developed where all possible pairs of signals are pickedand the intersection of their curves in parameter space is found. One of the parameters is then eliminated4



and the remainder(s) form the basis for a new histogram, which is has a cleaner signal-to-backgroundseparation than the original Hough transform. This version was found to be very successful with respectto solution quality but at the expense of heavy CPU demand.
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Figure 1: (a). Generated signals corresponding to non-perfect straight tracks with noise together with thesolution obtained from the local Hough transform. (b). Resulting �-distribution.
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Figure 2: (a). Generated signals corresponding to straight tracks emitted from three di�erent vertices.(b). Resulting (x0; y0)-distribution.In this paper we present another alternative, which is local and hence very fast to execute. One de�nesa small neighbourhood (circle) around each signal and calculates the parameter values (�a; �a and a)for each other signal within this neighbourhood. In this process one ignores signals sitting on the same5
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κFigure 3: (a). Generated signals corresponding to perfect helices with no noise together with the solutionobtained from the local Hough transform. (b). Resulting (�; �)-distribution.pad-layer, since it is most unlikely that a track follows a pad-layer5. This procedure makes the number ofcalculations go like O(N ) and not like O(N2) when one takes all possible pairs of tracks. And, maybe moreimportantly, it reduces the noise. In what follows we use this local Hough transform. We have exploredthis technique in a number of di�erent situations ranging from "academic" tracks to more realistic dataincluding energy losses (non-perfect spirals) and noise signals.Straight tracks. For perfect lines with no noise signals the Hough transform is of course trivial - it isan analytical transformation. In order to challenge the algorithm we have generated tracks with noiseand small deviations from pure lines originating from the same vertex. In �g. 1a we show such an event.The resulting �-distribution is shown in �g. 1b. As can be seen from �g. 1 the transform gives goodsolutions to the problem. No additional ambiguities need to get resolved by further processing. We havealso generated signals corresponding to straight tracks (perfect lines with no noise) originating from threedi�erent vertices. Such an event is depicted in �g. 2 together with the parameter distributions underlyingthe solution. Again the algorithm seems to work very well. This example is particularly interesting sinceit gives a hint on how to handle situations involving vertex reconstruction and situations with multipleevents as expected at LHC and SSC (non-perfect helices) and noise. Such an event projected onto thex̂ŷ-plane is shown in �g 4 together with the (�,�)-distribution obtained with the local Hough transform.To improve the solutions for straight tracks with the elastic arms method described in the next section isstraightforward. We therefore leave straight tracks and move to curved ones.Curved Tracks. Academic curved tracks with perfect helices and no noise signals are easily handled bythe local Hough transform as is shown in �g. 3. This is contrast to "real" curved tracks generated byCERN DELPHI TPC event generator [19], which contain energy losses (the physical dimensions of theTPC detector can be found in section 5.2). As can be seen from �g. 4 the local Hough transform cannotsolve the problem. Furthermore as can be seen from the (�; �)-distribution it is very di�cult to have aunique procedure for de�ning a cut that yields the number of tracks. The origin of these problems are5Pad-layers are concentrical rings of detector elements. 6
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θ
κFigure 4: (a). Signals generated by the CERN DELPHI TPC event generator together with the solutionsgenerated by the local Hough transform. (b). Resulting (�; �)-distribution.threefold:� Energy losses (non-perfect helices).� Presence of noise signals.� Decaying particles.In a certain sense decaying particles (secondary vertices) is also a form of noise within our approach,since all trajectories are in general assumed to originate from a common origin. The �rst two items willbe e�ciently dealt with by the elastic arms approach, which is presented in the next section. Practicalproblem with extra vertices originating from decaying particles is not the focus of this paper - possiblesolutions are discussed in the end.4 The Elastic Arms Approach4.1 Derivation of the AlgorithmArmed with a set of M deformable templates (�a; �a; a), a = 1; :::M , we �t them to the measured points(xi; yi; zi) with a �tness measure de�ned asE[Via; �a; �a; a] =Xi;a ViaMia + �Xi fXa Via � 1g2 (5)where Via is a binary decision unit such that Via = 1 (6)7



if the ath arm goes through the ith point and is zero otherwise.We want to minimize E[Via; �a; �a; a] with respect to Via; �a; �a and a subject to the global constraintthat each point is either matched to a unique circle or not matched. More precisely, given i there exist aunique a such that Via = 1 - a measured point should only be assigned to one arm. The second term ineq. (5) imposes a penalty � if a speci�c point is unmatched to any circle. This can be related to RobustStatistics [15]. With this parameter � one can allow for noise points not to be associated with any arm (e.g.cosmic ray events). Also it governs the �nite width of a track in terms of signals being slightly displacedfrom an ideal arm. When �nding global minima of an energy function one often needs to introduce noisein order to avoid getting stuck in local minima. A common procedure for this is simulated annealing [21]where the system is allowed to thermalize for a sequence of temperatures (noise) Tn > Tn�1 > ::: > T0according to the Boltzmann distributionP [Via; �a; �a; a] = 1Z e��E[Via ;�a ;�a;a] (7)where � = 1=T is the inverse temperature and Z is a normalization constant, the so-called partitionfunction Z = XfViag X�a�aa e��E[Via ;�a;�a ;a] (8)We now compute the so-called marginal probability distributionPM [�a; �a; a] = XfViagP [Via; �a; �a; a] (9)by integrating (summing) out the neuronic degrees of freedom, Via. In doing this we must ensure that wesum only over con�gurations of the V 's, which satisfy the global constraints de�ned above. As a �rst stepwe rewrite eqs. (7,9) as PM [�a; �a; a] = 1Z XfViagYi e��Pa ViaMia���fPa Via�1g2 (10)The di�erent possible Via's correspond to functions a0(i) which are either 1 or 0. This means that the�rst term in the exponent of eq. (10) only gets contribution for a0(i)'s, which are 1. Correspondingly thesecond term is only non-zero when a0(i) = 0. This givesPM [�a; �a; a] = 1Z Xa0(i)Yi e��Mia0(i)��� (11)= 1ZYi Xa e��Mia���where in the last step we have interchanged the order of the summation and product and made thenotational replacement a0(i)! a. We now rewrite eq. (11) asPM [�a; �a; a] = 1Z e��Eeff [�a ;�a;a ] (12)where we have introduced the e�ective energy Eeff asEeff [�a; �a; a] = � 1�Xi logfe��� +Xa e��Miag (13)8



We are looking for the most probable con�gurations to eq. (12). These should be given by the minima ofEeff with respect to �a, �a and a. This is done by a gradient descent method for a sequence of decreasingtemperatures (annealing). One gets��a = ��@Eeff@�a = ��Xi V̂ia @Mia@�a (14)��a = ��@Eeff@�a = ��Xi V̂ia @Mia@�a (15)�a = ��@Eeff@a = ��Xi V̂ia @Mia@a (16)or in a more generic form with notation ~�a = (�a; �a; a)�~�a = ��rEeff = ��Xi V̂iarMia (17)where r operates in ~�a space. In eqs. (14-17) the Potts factor V̂ia is given byV̂ia = e��Miae��� +Pb e��Mib (18)From eq. (2) one easily computes the partial derivatives @Mia=@�a, @Mia=@�a and @Mia=@a, which canbe found in appendix A.4.2 A Bayesian ViewMaximizing PM [�a; �a; a] can be thought of as performing a maximum likelihood estimation of the pa-rameters �a; �a; a of a model that generates data ~ri with probabilityP [~ri : �a; �a; a] = 1Z� fe��� +Xa e��Miag (19)We then apply Bayes' theorem to obtainP [�a; �a; a : ~ri] = P [~ri : �a; �a; a]PM [�a; �a; a]P [~ri] (20)If we make the reasonable assumption that the prior probability of �a; �a and a, P [�a; �a; a], is uniformthen �nding the best a posteriori estimate, maximizing P [�a; �a; a : ~ri] with respect to �a; �a; a, isequivalent to maximizing P [~ri : �a; �a; a].This corresponds to a mixture of distributions and can be thought of as multiple regression (see ref. [20]).The �-parameter must now be interpreted as a measure of the spread of the distribution and must beestimated from our sensor model. Our probability distribution therefore assumes that the data comeseither from one of the templates �a; �a; a or from a uniform distribution parameterized by �. Note that ifwe allow the ~ri to occur in an in�nite range then, because of the uniform distribution, the normalizationfactor Z� will be unde�ned. This need not concern us, however, since we are only interested in the mostprobable state. 9



4.3 How Does the Algorithm Work?How does this algorithmwork? At the starting temperature TH a set of template arms are placed accordingto the Hough transform values for the parameters �a, �a and a. The templates are Gaussian distributionscentered around the arm values where the width is given by the temperature (see �g. 5). Initially each armcan attract many signals. The relative importance of the di�erent signals is measured by the Potts factor(eq. (18)). As the temperature is lowered the di�erent arms are attracted to nearby signals more intensely.As discussed in connection with eq. (5) � governs the amount of noise points or outliers the algorithm
Figure 5: An elastic arm at temperature T.allows for. It enters the Potts factor (eq. (18)) as a "zero" neuron in the denominator which is neverupdated - it does not depend upon Mia. For � !1 no noise is ignored and the "zero" neuron vanishes.For �nite values of � the "zero" neuron absorbs all data outside 1=� from the domain of attraction of thearms.4.4 The E�ective Repulsive ForceThe Potts factor implicitly contains a repulsive force with its winner-takes-all structure. Consider a situa-tion where an arm is located approximately in between two tracks of signals. The track which has smallestMia-values with respect to the arm (no matter how small the possible di�erence is) will take over andmove the arm to the correct position. Any other arm in the "area" will be attracted to other tracks. Inthis sense there is a repulsive force between the arms. This repulsion force is transparent already at thee�ective energy level. Omitting an unimportant exp(��) factor eq. (13) readsEeff [�a; �a; a] = � 1�Xi logf1 +Xa e��(Mia��)g (21)Taking the limit as � 7! 1 giveslim� 7!1 1� logf1 +Xa e��(Mia��)g 7! 0; if Mia > � for all a7! ��minaMia otherwise (22)10



If the algorithm is initiated by too many arms from the Hough transform the extra tracks will behaveaccording to the following 3 possibilities:1. Attracted to noise.2. Attracted to points belonging from tracks originating from decay vertices.3. Attracted to a track upon which another arm has already settled in .In the third alternative the e�ective repulsive force dies away when one of the arms is already settled.One gets an extra arm on top of another. This is in contrast to the approach of ref. [9], where one-armtemplates are �tted to the data in a serial way. Incrementally �tted arms avoid already �tted signals byan explicitly introduced repulsive interaction term w2=(w2 + x2), which is quite similar to the one in eq.(21) - both are unimodal and peaked at the origin, and fall to zero at in�nity. For large values of � varyingw is essentially the same as varying �. In our terminology, therefore, Gyulassy and Harlander's strategy[9] of decreasing w during the computation corresponds to reducing � and is an alternative to annealingon �.4.5 Phase Transition PropertiesDecision problems described in thermodynamical language typically contain phase transitions when goingfrom high to low temperatures. This is the case for problems that can be mapped onto pure neuronicmagnetic-like systems [2], but also for template systems like the elastic net for the traveling salesmanproblem [3, 23] and in principle also for this one. In the traveling salesman case a set of template citieswith spring-force interactions are placed on circle with an origin close to the the center of gravity of thesignals (in this case the cities). The equation have a similar form to those of eqs. (14,15,14), the maindi�erence being the absence of the "zero" neuron. As the temperature is lowered the circle containing thetemplate cities is deformed and expanded to match the cities. During this annealing the correspondingPotts factors sharply go from all components being equal to a situation where one component is 1 andthe remainders 0. Such a phase transition behaviour is often conveniently monitored by the saturation� = 1=NPa;i V̂ 2ia [2], which rises sharply from 1=M to 1, where M is the number of template cities, whenthe temperature goes from in�nity down to zero. In the traveling salesman the T !1 corresponds to thecircle being contracted to a point where the distances to all cities are the same (center of gravity).What is the corresponding T !1 limit in our case of track �nding? It corresponds to a situation where allthe arms have identical parameters given by minimal distance to all signals. In principal one could initializethe algorithm in the vicinity of this trivial �xed-point. However, from the point of view of computationalspeed it is more advantageous to use the Hough transform parameters values as a starting point - thismeans that the algorithm is initialized below the phase transition point Tc. Being initialized below Tc doesnot mean that all matching decisions are taken by the Hough transform. It only has impact on the globaldistribution of arms - many matching decisions between nearby and crossing tracks needs to be taken.This is e�ciently done by the elastic arms algorithm.11



4.6 Relation to EM AlgorithmsAn alternative algorithm for minimizing eq. (5) is the EM algorithm [24] which proceeds iteratively byalternating two operations. The �rst minimizes E[Via; �a; �a; a] with respect to the �a; �a; a variableswith the Via being �xed. The second then calculates the best estimate of the Via analytically using eq.(18). EM algorithms6 have empirically shown themselves to be very quick to converge though there iscurrently no theoretical results which explain this.4.7 The Hough Transform LimitThere is an interesting relation between the e�ective energy for our deformable templates and the Houghtransform. Whereas the authors of ref. [9] start with the Hough/Radon transform 7 and generalize it toelastic tracking our approach implies the opposite. We start with deformable templates and show that theHough transform comes out in the large � small � limit.The e�ective energy for one deformable template is given by (a = 1)Eeff [�] = � 1�Xi logfe��� + e��Mi1(�)g (23)where � = (�1; �1; 1) are the parameters of the single template andMi1(�) is the closest distance betweenthe data point ~ri and the template parameterized by �.Minimizing Eeff [�] with respect to � is equivalent to maximizingH[� : �; �] = 1�Xi logf1 + e��(Mi1(�)��)g (24)where we have dropped a constant factor N� from the cost function.In the limit as � 7! 1 we �nd1� logf1 + e��(Mia��)g 7! 0; if Mi1 > �;7! � �Mia; if Mia < � (25)This already has the avour of a histogramming technique; if a point ~r is su�ciently close (closeness ismeasured by �) to a curve with parameters � then it gives a contribution to H[� : �; �]. The discrete limitcan be attained by dividing H[� : �; �] by �. Then, as � 7! 0, we get a contribution = 1 if Mia = 0 andzero otherwise - this is nothing but the Hough transform. The same argument is easily generalized to thecontinuous limit, the Radon transform [10].Thus we obtain the Radon/Hough transform in the limit as � 7! 1 and � 7! 0. In this limit we can usestandard Hough techniques to �nd the extrema of H[� : �; �], alternatively we could use gradient descentalgorithms with multiple starting points. This is not entirely surprising. The � !1 limit corresponds to6EM is short for having iterations where an expectation step is followed by a maximization step.7The Radon transform is the continuous version of the Hough transform.12



T ! 0, which is gradient descent in neural net language. Multiple gradient descents from di�erent seedsis a form of exploratory search which the Hough transform does in the zero resolution limit. In ref. [22] itis demonstrated that for the related problem of image segmentation a number of existing algorithms cansimilarly be understood in terms of "annealing" along di�erent parameters.5 Simulations and Results5.1 Implementation Issues5.1.1 The Hough TransformThe Hough transform is used to initialize the elastic arms algorithm. In its standard form possible trackparameters ~�a=(�a; �a; a) with �nite resolutions ��a, ��a and �a are determined from the measuredsignals ~ri by solving the equation Mia(~ri; �a) = 0 (26)One then makes a histogram in parameter space to �nd the most "popular" parameter values within theresolution. Eq. (26) has very many solutions8 for every ~ri. This fact together with the existence of energylosses (non-perfect helices) and of noise makes the standard Hough transform not so e�ective. We thereforeuse a local Hough transform (see sect. 3) which consists of two steps; �rst �a and �a are determined usingsignals projected onto the x̂ŷ-plane and then a are determined using the found �a and �a.1. Projected tracks. First we de�ne a circle with radius �xy around each signal i such that it coversat least two pad-layers in the detector. For all signals j within the �xy-neighbourhood except thosebelonging to the same pad-layer we then simultaneously solveM (xy)ia = 0M (xy)ja = 0 (27)for all pairs of projected signals ~r(p)i and ~r(p)j . The solution to eq. (27), which can be found inappendix B, is a helix going through ~r(p)i , ~r(p)j and (0,0). These solutions are then used to make ahistogram in (�; �)-space. The size of the detector de�nes the upper limit of � (0 � j�j � 1=rmin),where rmin is the the distance from the collision vertex to the inner boundary of the cylindricaldetector. In cases where one is only interested in particles with a certain minimal energy the upperlimit of � should be lowered accordingly. The emission angle limits (0 � �a � 2�) can of course alsobe changed if one is only interested in particles appearing in certain directions. The entries (�a; �a)that exceed certain thresholds are then kept as potential (projected) tracks for the next step.2. Correlation with the longitudinal dimension. We now use the established set of f�a; �ag to seeif there is a correlated set fag. Again this can be done locally by de�ning a small neighbourhood�z around each found track in the x̂ŷ-plane - �z de�nes a thin "sausage" around the track (for theDELPHI TPC data we chose �z=5). One track (�a; �a) is chosen and the equationM (z)ia = 0 (28)8In the continuum limit a circular track corresponds to in�nitely many solutions.13



is solved for each signal ~ri that has a projection ~r(p)i in this neighbourhood. One then makes ahistogram in -space to �nd the most popular . If (�a; �a) is a valid track then there should only beone substantial peak in the histogram corresponding to its a-value. If no such distinct peak exists,it is very likely that the track (�a; �a) is nonvalid one. These last two steps are repeated for every(�a; �a)-pair.We are now armed with a set of spirals ~�a = (�a; �a; a) to initiate the elastic arms algorithm with.5.1.2 The Elastic Arms AlgorithmGiven the approximate number of arms and the corresponding initial values of parameters from the Houghtransform we next minimize the e�ective energy Eeff [�a; �a; a] de�ned in eq. (13) using the gradientdescent equations (eqs. (14-17)). In this subsection we give a set of prescriptions and hints of how toensure good and rapid convergence in a way that is as problem independent as possible.From eq. (17) we have �~�a = ��rEeff . However, the partial derivatives Eeff=@�a, @Eeff=@�a and@Eeff=@a all have di�erent magnitudes. We therefore use di�erent update rates for these di�erentparameters. Also the nature of � is di�erent than the other two. For an almost straight track a minorchange in � has more impact than on a strongly curved track. For this reason we need learning rates for �that depends strongly upon j�j. This naturally implies individual � update rates, �(1)� ,�(2)� ,...,�(M)� . For �aand a the situation is the opposite since they should be independent of j�aj and jaj. We therefore havecommon update rates �� and � for these parameters. In summary we have:� Common update rates �� and � for all M arms.� Individual update rates �(a)� for each arm a.Also, the magnitude of the partial derivatives depend strongly upon the magnitude of our signal coordinatesj~rij. In order to make the update rates less dependent on di�erent tracking-problems we rescale the signals~ri to some prede�ned dynamic range, in our case, j~rij � 10.When initiating the �'s we want a smooth transition from the the Hough parameter values. This canbe accomplished by choosing ��, � such that ��(1=M )Pa j@Eeff=@�aj and �(1=M )Pa j@Eeff=@aj aresmall numbers as compared to the range of � and  respectively. The ��'s are chosen such that ��a issome fraction of �a, where we again as an estimate of j@Eeff=@�aj use (1=M )Pa j@Eeff=@�aj.As mentioned earlier, T is measure of the width of the Gaussian around each arm, therefore T0 and Tfinalshould be chosen with respect to the magnitude of the dynamical range.The left hand sides of eqs. (14-16) in principle contain sums over all signals i. But the template armsare in reality half-spirals which means that the sums should be restricted to include only those signalslying in the same half-sphere as the arm does. If we are looking for very high energy particles with smallcurvatures this aperture can be limited even more leading to a signi�cant speed-up of the algorithm.As mentioned in section 4.4 it is possible for extra tracks to be attracted to noise-signals. These can beremoved after the algorithm if we require valid tracks to pass through a minimal number of signal-points.14



1. Obtain an initial set of arms from the localHough-transform.2. Rescale the signals ~ri to the dynamicalrange.3. Choose update rates ��, ��, � and � ac-cording to the dynamic range. Do the samething for �, T0 and Tfinal.4. For a sequence of temperatures Tn = kTn�1,Tn � Tfinal, with k=0.95, update accordingto eqs. (14-16,29).5. Make it converge at T = Tfinal by loweringthe update rates until Eeff is not changing.�� = �� ���a� = �� �a�� = �� �where �=0.9.6. Delete extra tracks, which are attracted tonoise or double ones (see text).Figure 6: The elastic arms algorithm for particle-tracking. The algorithm is not very sensitive to choiceof k and �. Parameters speci�c for the DELPHI TPC experiment can be found in table 1.Another possibility is that the extra track becomes identical with an already existing track. This checkshould be done after the algorithm has converged.The parameter � governs the relative importance of signals not associated with any track. Since there arenoise-signals and signals originating from secondary vertices (also considered as noise in this context) �should be kept small as compared to an average Mia, allowing signals not to be matched to any track.The gradient descent method is just one way of minimizingEeff , which is very simple to implement. Other,more elaborate and powerful minimization procedures involves the second derivative (Hessian Matrix) ofEeff . Conjugate gradient descent is another possible minimization procedure where only the �rst derivativeof Eeff is needed [25]. We did not use these methods in our application studies. A very simple way toimprove the gradient descent method is to introduce a so-called momentum term. Each degree of freedom�a is given some inertia or momentum. In other words ��a(t) gets a contribution from��a(t�1) accordingto �~�a(t) = �~�rEeff + ��~�a(t� 1) (29)where 0 < � < 1. This means that pa feels an average downhill "force" when moving on the energysurface. The momentum term can prevent the energy from oscillating and hence make the minimizingmore e�ective. We use this updating applications in our with � = 0:5.In �g. 6 we show a "black box" prescription of the elastic arms algorithm that we use in our applicationstudies. 15



Local Hough transform resolution (��;��) [180,100]threshold (~�; ~�) 6Elastic Arms dynamic range j~rij � 10� 0.01TH 0.2Tfinal 0.01� 1.06� 0.5Table 1: Detector speci�c parameter values for the local Hough and the elastic arms algorithm using datafrom the CERN DELPHI TPC detector..5.2 Numerical ExplorationsWe have tested the performance of the algorithm with simulated data from the CERN DELPHI TPCdetector [19]. This detector is a cylinder with 35 cm inner and 111 cm outer radius and a length of 2.7 m.This simulator is supposed to very realistic with respect to energy losses, noise etc.. Hence it should besu�cient as a challenging test bed for our algorithm. The elastic arms algorithm we used follows closelythe one in �gure 6. Detector speci�c parameters choices are found in table 1. The �nal results are shown
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iterationsFigure 7: Development of the �a's. These have been normalized to the average number of signals pertrack (�16).in �gures 8 and 9. It is encouraging to see how well the algorithm works. The arms do not confuse oneanother, even when passing close, or crossing each other. This is of course due to the Potts factor (eq.(18)), which in a sense "decides" which track each arm should be attached to and ignores the others. It isinteresting to see how di�erent �a =Pi V̂ia develop with decreasing temperature (or iteration step). Thisis shown in �g. 7. In this �gure we have deliberately chosen to initiate the algorithm at a high starting16



value for the temperature. This implies that after a few iterations some arms will become identical (seesection 4.5). During the annealing process di�erent arms are then attracted to di�erent tracks. This canbe seen in �g. 7 as the development of �a's. There are also "neurons" that die out, which means that theyare redundant and do not correspond to tracks. In practice, however, we use a lower initial temperaturesince we do not want to "destroy" the Hough initialization. This decreases the number of iterations neededto be approximately 40-50 for DELPHI TPC problems.When the algorithm is initiated at a temperature close to the one corresponding to the Hough transformvalues the problem is easier in the sense that many of the rough Hough estimates of the track parame-ters only need �ne tuning. It is impressive that the algorithm is also able to solve problems when this"intelligent" initialization is smeared out at a higher initial temperature as is the case in �g. 7.Errors that may occur comes from tracks that violate the assumptions for this algorithm, that is, (i) tracksthat not originate from our a priori known vertex position and (ii) tracks that, due to energy losses, arenot spirals. The problem with secondary vertices can, in principle, be dealt with if we introduce a newparameter ~r(o)a , which is the vertex position for track a. The elastic arms algorithm, derived in section4.1, does not change, but the distance measure Mia is now also a function of ~r(o)a . A generalization toinclude unknown vertex positions should be straightforward. Problem (ii) comes from particles with verylow energy, and usually one wants to ignore these kind of particles. If, for some reason, one wants to todetect these low energy particles one would have to use a new parameterization for the arm to includeenergy losses.
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Figure 8: (a). Result from Hough/Elastic arms algorithm with signals generated by CERN DELPHI TPCevent generator (308 signal points). (b). The same result projected onto the x̂ŷ-plane.We consistently �nd that treating the problem in three dimensions with our algorithm is crucial whenresolving some assignment ambiguities appearing on the two-dimensional level.17
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Figure 9: (a). Result from Hough/Elastic arms algorithm with signals generated by CERN DELPHI TPCevent generator (395 signal points). (b). The same result projected onto the x̂ŷ-plane.Not only does the algorithm exhibit good performance, it is also very cost e�ective in every respect. Intable 2 we show scaling properties and time consumption. The underlying F77 code contains only O(300)lines. Scaling Properties CPU consumption [DEC3100]Hough transform N -N2 O(1 sec)Elastic Arms N� M O(1 min)Table 2: General scaling properties and time consumption needed to a process a typical DELPHI TPCevent. N and M denote the number of signals and potential arms respectively.6 Summary and OutlookWe have devised a track �nding method that combines the matching and the �tting problem into a singlealgorithm. It goes from coarse to �ne resolution by using a variant Hough transform to initialize a set ofelastic arms. The latter settle in an annealing process in a deterministic way to deliver the �nal parameters- the momenta.The approach gives rise to high quality solutions with very good scaling properties (approximately linear18



with the number of signals) and modest CPU consumption. It is straightforward to implement on a parallelprocessor. The algorithm is fairly insensitive to convergence parameters - we have applied it to DELPHITPC data in a "black box" manner.The elastic arms approach is very similar to human processing for this kind of recognition problem. Ahuman looks for helices in a global way and then makes �ne-tuning adjustments. This is in contrast toconventional road�nder methods [14] and pure neuronic approaches [4, 5], which are based on more localconsiderations.The algorithm is closely related to robust statistics - it ignores noise to a desired level.The approach is easy to adapt to speci�c situations. For example, suppose measurement precisions varyfor di�erent pad-layers. Then the formalism can be generalized to allow for di�erent i-dependent �'s forthe di�erent pad-layers.In this paper we have focused on the basics of the algorithm and methology for getting fast convergence.Our main application study was simulated curved tracks (including noise) in the DELPHI TPC detector.At this point we ignored secondary vertices from decaying particles. These can be accommodated byallowing for more parameters describing the arms (vertex positions). Preliminary studies of this extensionusing straight tracks looks promising. Also with these extensions the algorithm could be used for vertexdetection in general. At LHC/SC luminosities one expects multiple events per bunch crossing. Again,allowing for extra parameters, this algorithm has the potential of disentangling such events. Cerenkovimages are also of parametric nature and should hence be tractable with this approach.AcknowledgementsWe would particularly like to thank O. Barring for providing us with the DELPHI TPC simulation data.We would also like to thank K. Honda for discussions and to acknowledge support from DARPA withcontract AFOSR-89-0506.
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Appendix AIn this appendix we give the partial derivatives computed from eq. (2) that are needed in the elastic armsequations (eqs. (14,15,16)). @Mia@�a = @M (xy)ia@�a � 2a(zi � at) @t@�a (A1)@Mia@�a = @M (xy)ia@�a � 2a(zi � at) @t@�a (A2)@Mia@a = �2t(zi � at) (A3)where t is found in eq. (3) and the x̂ŷ-projected quantities are given by@M (xy)ia@�a = � 2�a ( 1p(�axi + sin �a)2 + (�ayi � cos �a)2 � 1) (xi cos �a + yi sin �a) (A4)@M (xy)ia@�a = � 2�3a n1�p(�axi + sin �a)2 + (�ayi � cos �a)2o�� (1 + �ayi cos �a � �axi sin �a � 1p(�axi + sin �a)2 + (�ayi � cos �a)2) (A5)and @t@�a = �sgn(�a)� �ayi cos �a � �axi sin �a � 1(�axi + sin �a)2 + (�ayi � cos �a)2 + 1� (A6)@t@�a = sgn(�a)� xi cos �a + yi sin �a(�axi + sin �a)2 + (�ayi � cos �a)2� (A7)Appendix BIn order to calculate (�a; �a) for a helix going through ~rpi , ~rpj and (0,0), we need to solve eq. (27) withMxyia given by eq. (2). With (xi; yi)=~rpi , we get1�2a n1�p(�axi + sin �a)2 + (�ayi � cos �a)2o2 = 01�2a �1�q(�axj + sin �a)2 + (�ayj � cos �a)2�2 = 0 (B1)Next we change to polar coordinates (ri cos i; ri sin i) = (xi; yi)! (ri;  i), which gives us�a = 2ri sin ( i � �a)�a = 2rj sin ( j � �a) (B2)20



Eliminating �a from eq. (B2) yields tan �a = rj sin i � ri sin jrj cos i � ri cos j (B3)
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