Lecture notes for
Programming in Perl — BINP13

Mattias Ohlsson!
Department of Astronomy and Theoretical Physics
Lund University

Fall 2015

IThe following persons have also contributed significantly to the notes: Leif Lonnblad and Jari
Hakkinen

Contents

[2

Introduction to programming]

2.1 What isa computer|.

2.3 What is a program|
2.4 Operating system|

2.5 Languages|

10
10
10
10

11
11
11
12
12
14
15
15
15
16
16
17
18

CONTENTS

[3.1.5 Shortcut operators| 24
[3.1.6 Variable interpolation|. 00000 25
[3.1.7 Arrays and lists|o 25
B.1.8 Hashes 27
[3.1.9 Follow-up tasks|3t-1| 28
3.2 Basic input/output| 30
[3.2.1 Follow-up tasks|3t2| oL 32
[3.3 Loops and conditions| 34
[3.3.1 Condition for one statement| 34
[3.3.2 Condition for compound statements|. 35
3.3.3 What is truth? 36
[3.3.4 Logical operators| 37
................................... 37
[3.3.6 More loops| 38
[3.3.7 Themagicot $1.o 40
[3.3.8 A complete program|o 40
[3.3.9 New features: the switch statement! 41
[3.3.10 Follow-up tasks|[3t3| 42
[3.4 Pattern matching| 42
[3.4.1 Approximately equal to| 43
[3.4.2 Regular expressions| oL 43
.43 Meta charactersl oo o 44
[3.4.4 What has been matched?.o o000 46
[3.4.5 Match again|. 46
[3.4.6 Greedy versus tight matchingl 47
(.47 Match the matched| oo 47
[3.4.8 Variable interpolation in regular expressions| 48
[3.4.9 Substitutionslo 48
[3.4.10 New teatures: smart matching| 50
[3.4.11 Follow-up tasks|3t4]o 51
B5 TFilehandled 52
[3.0.1 User defined filehandlesl. o000 52
3.0.2 Pipes|. 54

CONTENTS 5

3.6 Hand-in Exercise 1 b))
[4 Programming in Perll 57
4.1 More on built-in functions in Perllo 00000 57
1.1.1 split and join (4 qw, x operator, “here docs”, .=)[. 57
[4.1.2 push, pop, shift, unshift and splice] 60
[4.1.3 The map functionl. 61
[4.1.4 Sorting|. 62
“W.1.0 Standard mathematical functionso 00 64
4.1.6 Other built-in functionsl L. 64
[4.1.7 Follow-up tasks4-1| 65

1.2 User-defined functionsl Lo Lo 65
[4.2.1 Defining and calling simple tunctions| 66
[4.2.2 Functions with arguments| 67
[4.2.3 Functions returning a value| 68
[4.2.4 Namespaces and variable scopes| 69
[4.2.5 References as tunction arguments| 71
[4.2.6 Follow-up tasks|4t2| 73

4.3 Accessing things outside a script|. L. 74
[4.3.1 Command-line arguments| 74
4.3.2 FEnvironment variables 000000000 76
[4.3.3 Running programs from within a script| 7
[4.3.4 Follow-up tasks4t3|o 79

4.4 Modules 80
[4.4.1 A simple user-provided module, 80
(.42 Using the Getopt::Std module] 82
[4.4.3 Follow-up tasksfdt4|o 84

4.5 Rules of thumb and recommendationsl 84
[4.5.1 Before starting coding| 84
[4.5.2 Disciplined programming| L. 84
[4.5.3 User-friendly programming|. 85

4.6 Hand-in Fxercise 2|o 85
[> Applying Perl| 87

[>.1 Introduction to chapter|s|. o 87

6 CONTENTS
[>.2 Change of file formats| 87
[5.2.1 clustalw to phylip and phylip to clustalw{ 87
[5.2.2 Follow-up tasks|obl | 93

[5.3 References, objects and methods|". 94
[5.3.1 Creating references|o 94
[5.3.2 Using references|. 95
[5.3.3 Examples of using references| 97
5.3.4 Objects and methods| 99
[5.3.5 Follow-up tasks|pt2 | 99

[>.4 Searching in large text files|. oo 100
H.4.1 The Swiss-Prot flat filelo 100
[5.4.2 The pdb2sprot.txt file] 102
[5.4.3 search.pll 102
[5.4.4 Follow-up tasks|pt3|o oo 104

[>.5 Blast parsing] 105
[5.5.1 Follow-up tasksfpt4|o 111

.6 Hand-in exercise 3| 111
6 The CGI and bioperl Modules| 113
[6.1 Introduction to chapter|of. oL 113
6.2 Numerical Perll o 113
621 Matriceso 114
6.2.2 Random Numbers. 116
[6.2.3 Simple Statistics Module|o o000 00000 117
[6.2.4 T'he Perl Data Languagel 118
[6.2.5 Follow-up tasks|oF1 | 120

(6.3 CGI.pm (Common Gateway Interface)| 120
[6.3.1 Example 1| 121
6.3.2 Example 2| 122
6.3.3 Example 3| 123
[6.3.4 Example 4] 126
6.3.5 Exampled|. 127
[6.3.6 Follow-up tasks|or2| oo 128

nspiration of how to write this section is coming from “Programming Perl, third edition”

CONTENTS

[6.4 BioPerl project (Part 1) |
[0.4.1 Bio::Seq
[0.4.2 Bio::Seqll|

[6.4.4 Follow-up tasks|ot3 | o
(6.5 BioPerl project (Part 2)] o oo

(A Example code output|

(B Common Perl mistakes|

129
129
131
135
137
138
138
140
142
142
144
144

147

155

CONTENTS

s oW o =

Chapter 1

Preface

1.1 Introduction to this course

In short, this course will teach you the basics in Perl programming, were the focus will be
on solving common problems that may appear in everyday bioinformatics.

The course is divided into lectures in the morning (10.15 - 12.00) and follow-up exercises in
the afternoon. The will be exercise leaders between 13.15 - 15.00 (16.00).

During the course you should complete and hand in four “hand-in exercises”[] that will be
examined by the exercise leaders. These four exercises are part of the examination of this
course together with a written exam at the end of the course. Your final grade is depends
on both the hand-in exercises and the written exam.

This document contains the lecture notes, follow-up exercises and hand-in exercises. The
notes are meant to be a complement for the lectures and not as a standalone “textbook”.
Usually you will need additional files in order to complete the exercises. These can be
accessed on the course web page (see below). The lecture notes contains a lot of example
code, e.g.

#! /usr/bin/perl -w
print "Hello World\n";

Usually one can find the output of the example code either directly in the notes or in the
Appendix [A] When the output of the example code is in the Appendix [A] it is marked with
a 1 character. E.g.

hello.plf

#! /usr/bin/perl -w

print "Hello World\n";

hello.plf

ook at section for more information about the hand-in exercises.

9

10 CHAPTER 1. PREFACE

1.2 How to obtain files and documents for the exercises

There is a web page for this course where Perl files and other documents for the exercises
can be accessed. The homepage is

http://home.thep.lu.se/~mattias/teaching/binp13

1.3 How to find (local) Perl information

You will most likely have to look up information about various Perl related questions. One
very good start is to use the perldoc command available in the Linux console. perldoc is
like the unix man command but only for “Perl questions”. Try

>> perldoc perl

to start exploring all the (local) information available on Perl. You can also look at the
course homepage under the “Misc” page to find other online Perl information sources.

1.4 Disclaimer

The idea of this course is to introduce everyone to Perl and show how to solve some common
problems in bioinformatics. Solving a problem using Perl can be done in more than one
way, easier or more complicated, writing compact code or writing code that is easy to follow,
writing code that is fast or writing code that takes longer time to execute, etc. These notes
are supposed to cover straightforward Perl usage and the examples are not meant to be
robust.

1.5 Contact Information

Lecturer & exercise leader
Mattias Ohlsson
mattiasQthep.lu.se

046-222 77 82

Exercise leader
André Larsson
andre@thep.lu.se
046-222 34 94

http://home.thep.lu.se/~mattias/teaching/binp13

Chapter 2

Introduction to programming

2.1 What is a computer

e A computer takes data from one or more input devices, processes it and sends it to
one or more output devices. The computer is a data machine.

e An input device can be the keyboard, the mouse, the network, a disk, a microphone,
a camera, a scanner, . ..

e An output device can be a disk, the network, a screen, a braille display, a loudspeaker,
a printer, ...

e Every time you move the mouse, you generate lots of data which is processed by the
computer.

e A disk and the network are both input and output devices.

e The processing is performed by the central processing unit (CPU) which uses a primary
random access memory (RAM) to temporarily store the data it is processing.

2.2 What is data

e Data consists of binary digits — bits. Each can be 0 or 1.

e Eight bits make up a byte.

e Four (or eight, depending on you computer) bytes make up a word.

e The data does not have any inherent meaning. It is just ones and zeros.

e The CPU typically have four inherent ways of interpreting data. One or two words can
be interpreted as an integer number, a floating point number, an address of another
word in the RAM or an instruction.

e Any other interpretation of the data is defined by the program which is running.

11

12

CHAPTER 2. INTRODUCTION TO PROGRAMMING

e We shall mostly be concerned with characters, but the CPU does not know what a

character is. Instead characters are internally represented by integer numbers corre-
sponding to the code of a character.

Characters can be encoded in many ways. The standard encoding is called ASCII
which can describe 256 different characters, i.e. a character fits in a byte. In the future
one may hope that UNICODE encoding will take over. This uses two bytes and can
handle almost all characters, even Chinese ones. Perl uses ASCII, but can handle
unicode aswell.

2.3 What is a program

e A program tells the CPU where to get the input data, what to do with it and where

to put the result.

A program is a sequence of very simple instructions. The CPU only knows how to do
very simple things such as

— Take two words at given addresses in the RAM and, treating them as integers,
add them together and put the result at a third address.
— Take a word from a device and put it at a given address in the RAM.

— Jump to a given address in the RAM and continue reading instructions from
there.

— Check the value of a bit and if it is zero, jump to a given address in the RAM
and continue reading instructions from there, otherwise continue reading the next
instruction.

— Take two words at two addresses in the RAM and, treating them as floating point
numbers, multiply them together and put the result at a third address.

It would be impractical if we had to write each of these instructions by hand. To be
able to tell the computer what to do we need to have a high level language which can
be translated into the basic instructions understood by the CPU.

The instructions are grouped into functions / subroutines / procedures | subprograms
which can do more complicated tasks.

Functions are grouped into programs.

A program is also data. It can be read in from a device and executed.

2.4 Operating system

e The operating system (OS) is The Mother of all programs in a computer. It runs all

the time and allows other programs to execute.

2.4. OPERATING SYSTEM 13

e When you bootstrap a computer it reads in the OS from the disk, and starts executing
it.

e In this course we will be using Linuzx.

e Just as most modern OS’s, Linux allows for having several programs running seemingly
simultaneously. This is achieved by continuously switching between reading instruc-
tions from different programs (processes).

e Typically there are a lot of programs running which we are not aware of. There is one
program which is handling the drawing on the screen. Another listening for input from
the keyboard, a third taking care of network connections etc.

e When we run a Perl program, we will be using a program giving a terminal window.
In the terminal there is a program running which interprets our commands — a shell.
The shell listens for keyboard input from another program, and the screen output is
sent to the terminal program which sends it on to the X-server which draws on the
screen.

e The OS logically divides the RAM available for a program into three different parts.

=
=
S
g - one word
E \
o
= 35 =y
= = S
7} 7] ==
one byte
Function pointer Stack pointer

CPU

e The program is stored in the static memory. The local data for the currently executing
function is stored in the stack and all other data is stored on the heap.

e When a function is executed its local data is stored at the top of the stack. When the
functions is finished, this memory is released and will be used by the next function
called. To create data which should survive after a function call, it must be stored on
the heap.

e The OS also defines a file system.

e In Linux there are different kinds of files, and they do not always represent data stored
on a disk. A directory is a special file which represents a set of other files. Executable
programs are also represented by special files.

14 CHAPTER 2. INTRODUCTION TO PROGRAMMING

e The file system is organized in a hierarchical structure which may be spread out on
several disks. All files can be accessed from the root directory (/). The same physical
file can be represented at several places in the hierarchy using (soft and hard) links.

e Devices are also represented by special files. E.g. /dev/mouse looks like a file, but is
actually directly connected to the mouse device.

e When we talk about input and output we need only concern ourselves with files.

2.5 Languages

e We use a programming language to tell the computer how to interpret the data and
what to do with it.

e The first languages concentrated on the what to do with the data part, while modern
languages are more concerned with how to represent the data — allowing the program-
mer to define new types of data suitable for the problem to be solved. The former are
referred to as procedural languages, while the latter are object oriented. (If you are a
really cool computer scientist, even object orientation is now passé — the new funky
thing is functional programming).

e The term programming languages is not a misnomer. They really are languages in the
same sense as English or Swedish.

e If you are good at learning foreign languages you are usually good at learning pro-
gramming languages.

e Normal languages contains words, expressions and sentences. Computer languages
contains tokens, expressions and statements.

e The main difference is that the computer is extremely picky when it comes to gram-
mar. If you make the slightest mistake, the computer pretends it doesn’t understands
anything.

e Similarly to the case of spoken languages, the only way to learn a programming lan-
guage fluently is to sit by the computer and write programs. Programming is 50% in
the brain and 50% in the fingers.

e A file containing a text (code) written in a program language needs to be translated
into the basic instructions which the CPU understand. This can be done in two ways.

e The code can be compiled, producing an executable file containing the basic instruc-
tions. Typically the code is compiled into an object file which is then combined together
with other object files to produce an executable. One object file contains the main
function and it needs to be linked together with other object files containing functions
which need to be called.

e Alternatively the code is read by an interpreter program which translates the code on
the fly and executes the corresponding instructions.

2.6. PERL 15

e Interpreted code is always slower than compiled code.

e A file with code for an interpreted language can be made to look as an executable file if
it starts with the characters #! followed by the filename representing a program which
can interpret the code.

2.6 Perl

e Perl is an interpreted language.

e Perl works with text, sequences of characters arranged in strings. All input and output
is sequences of characters.

e Perl was first mainly used by system administrators who needed to make quick-and-
dirty scripts (hacks) for boring repetitive tasks. It is full of handy little features.

e A file with Perl code which starts with the line #!/usr/bin/perl can be made into
an executable.

2.7 Hello World

#!/usr/bin/perl

print "Hello World!";

e This is a Perl program with one statement.

e A statement is an expression, or a several expressions connected by operators (which
may span several lines), ended by a ;

e This expression consists of two words. One identifier (print) refers to a function. The
other is a string literal.

e The statement means: Execute the function print with an argument which is a string.

e When run, this program will write out "Hello World” on the standard output. Normally
the standard output is the window where you started the program.

2.8 Procedural vs. Object Oriented programming

e Perl is a procedural language with some support for object oriented programming.

e The data can be strings or numbers and we call functions (procedures) to operate on
the data.

16

CHAPTER 2. INTRODUCTION TO PROGRAMMING

The first week we will write simple programs which call builtin standard functions to
perform simple tasks.

The second week we will explore more builtin functions and build our own functions
which we can call from a main program and from other functions.

It is important to understand the difference between global variables (on the heap) and
variables which are local to a function (located on the stack) and cannot be accessed
outside of the function.

It is also important to understand how arguments are passed to the functions (by value
or by reference).

We will use Perl objects in the end of the course.
We will, however, not learn how to construct classes of objects ourselves.
Classes are combinations of variables and methods defined for them.

In this way we can have variables which represents almost any concept, rather than
just strings and numbers.

Functions are verbs, Objects are nouns.

2.9 Comments

e In most programming languages you can add comments to the code which are ignored

by the compiler/interpreter. This is used to increase the readability of the code.

e In Perl, everything between a # and the end of a line is treated as a comment.

e [t is important to add comments to your code. But remember that Perl is itself a

language and people reading the code is supposed to understand that language, so do
not comment obvious code:

#!/usr/bin/perl
print "Hello World!"; # prints Hello World! to the screen.

2.10 Solving problems with Perl

e Even if we are only writing a single main program it is essential that we thoroughly

think through what we are going to do before we start writing the code.

e For a procedural language the standard method is called stepwise refinement.

e First think about the general outline of the problem. Divide it into subproblems, and

then consider each subproblem and try to divide them, in turn, into subproblems.

2.11. HAND-IN EXERCISES 17

e [t is like writing a recipe for cooking a meal. You do not start with boil some rice,

chop the onion and then oh, don’t forget to add salt to the water and maybe you want
to rince the rise first. Rather you would first specify the ingredients, then you would
specify the main steps, such as boiling the rice, frying the veggies and making the sauce.
For each of these you would then list the actual procedure.

2.11 Hand-in exercises

10

11

12

13

14

15

All the hand-in exercises in this course will require you to write Perl programs.

We do not require you to write any reports describing the programs, but we do require
you to comment your code in a special way so that we can follow how you have been
thinking when you wrote them.

The program must start with a comment section which describes the general outline
of the code, followed by a description of the procedure used.

We strongly recommend that you start by writing this comment section before you
begin to write the code.

The comment block should contain the following headings:

— Title

— Author

— Description

— List of subroutines
— Procedure

— Usage

Here is an example:

Program description
Title: lotto.pl
Author(s): Mattias Ohlsson

Description:
This program will estimate the probability of winning a game of
Lotto. The method used here is a Monte Carlo simulation of the
lottery. This means that 7 numbers are randomly generated from
the interval [1,35] without doublets and then 7+4 winner numbers
are randomly generated from the same interval. According to the
rules of Lotto the following situations will result in a winnings:

H OH HF H H HF H H H H H HE H H

4 correct numbers

18 CHAPTER 2. INTRODUCTION TO PROGRAMMING

16 5 correct numbers
6 correct numbers
6+1 correct numbers

7 correct numbers

17
18
19
20
21
22 List of subroutines:
23
24 iRnd: This function takes two integers, il and i2, as
25 arguments and returns random integer in the interval [il, i2].
26
GetNumbers: This function returns a vector of random numbers
in the interval [1,35], with all numbers different from
each other. The length of this vector is given as an

argument and must be <= 35.

27
28
29
30
31
Procedure:
1. Get the number of Monte Carlo runs to perform from STDIN.
2. Start the main Monte Carlo loop
2a. Get an array of 7 numbers (my Lotto row) and one with 11
numbers (the "winner numbers").
2b. Make a loop over all the 7 numbers and check if each of
them are present in the array of 7+4 winner numbers. Add
hits to the two variables $Corr7 and $Corréd, representing
the real hits or "tillaggsnummer" hits.
2c. Check the possible combinations for a winnings and record
such an event. Also record the different combinations.
3. Print a summary of the results found.

32
33

34

36
37
38
39
40
41
42
43
44
45 Usage:
46 ./lotto.pl [number of MC runs]

47

H OH HF H OH HF H HFH HHH HHHHEHEHEHH HHHHHHHHEHHFHE R H

48
49 H#HHAH B H AR R R

2.11.1 Rules for the hand-in exercises

There a few rules for the hand-in exercises:

e All 4 hand-in exercises are mandatory, you need to get an OK on each of them in order
to pass the course.

e They are used together with the written exam to make up the final grade.

e For most of the hand-in exercises there are sample/result output files. When running
your Perl program you should get “similar” results. For some exercises you need to
comply exactly with the sample files.

2.11. HAND-IN EXERCISES 19

e Before you hand in the exercises make sure that:

— the program contains a documented program header.

— the program runs without errors and warnings.

e You should all hand in individual solutions, but it is of course allowed (and even
recommended) to ask questions, to discuss etc with other students.

e Have fun!

