
Chapter 3

Basics in Perl

3.1 Variables and operations

3.1.1 Scalars

1 #!/usr/bin/perl

2 $hello = "Hello World!";

3 print $hello;

• $hello is a scalar variable. It represents an area in the memory where you can store
data.

• hello is an identifier (name). It represents the address of the memory area. The
$-sign means that we want to access the actual memory area.

• $hello = "Hello World!" means: Store the string of characters
"Hello World!" in the memory area represented by hello.

• A scalar variable can be in three different states: If nothing has been assigned to it, it
is undefined. Otherwise it may contain a string or a number.

• Unlike most other programming languages you do not have to declare what a variable
should contain.

• A variable name can be any letter from the English alphabet or an underscore followed
by other letters, numbers or underscores.

3.1.2 Strings

• There are two ways of specifying string literals: Any sequence of characters surrounded
by single or double quotation marks:

21

22 CHAPTER 3. BASICS IN PERL

"This is a string"

’This is another string’

• The difference between the two forms is the way special characters are interpreted.

• If you start a string with a single (double) quote, another single (double) quote is a
special character which ends the string.

• To actually have a single (double) quote character in a string you have to have to have
it in a string surrounded by double (single) quotes: "’" is a single quote and ’"’ is a
double quote.

• To prevent a special character to be interpreted as special, they can be escaped with a
backslash: ’\’’ is a single quote and "\"" is a double quote.

• A double quoted string has a lot of special characters, a single quote only have two
(the single quote and the backslash).

• A backslash can also be used introduce special characters in a double quoted string.
E.g. "\n" means the new-line character and "\t" means the tab character. We call
these escape sequences.

3.1.3 Numbers

• Number literals are specified in the standard computer way:

1

42

28.2

-109

6.04E23

• Note the decimal point is used rather than the Swedish decimal comma.

• The E should be interpreted as times ten to the power of. Hence 6.04E23 means
6.04 · 1023.

• Note that decimal numbers are not exact in Perl (or in any other language).

1 print 0.3+0.6-0.9;

will print out

-1.11022302462516e-16

or something similar (depending on the hardware).

3.1. VARIABLES AND OPERATIONS 23

3.1.4 Operators

• The standard arithmetic operators are available and can be used for variables and
number literals.

• We have addition +, subtraction -, multiplication *, division /, modulus % and expo-
nentiation **.

• 3 + 4 * 2 is processed as 3 + (4 * 2), i.e. the operators have different precedence.
To change this we can group expressions with parenthesis: (3 + 4) * 2.

• If arithmetic operators are used with variables, the variables are assumed to contain
numbers.

1 $a = 4;

2 $b = 2;

3 $c = 3 + $a * $b;

4 print $c, "\n";

will print out 11.

• If a variable does not contain a number when one is expected, Perl will try to convert
it to a number. An undefined variable is interpreted as 0. A variable containing a
string is parsed to try to read a number - if that fails it gives 0:

1 $a = "four";

2 $b = "two";

3 $c = 3 + $a * $b;

4 print $c, "\n";

will print out 3. Mixing numbers and strings when doing arithmetics is not a good
idea, even though Perl can be forgiving. The following code is an example of this.
Again, relying on this behaviour will most certainly lead to bugs.

1 $a = " \n4";

2 $b = "2 blah";

3 $c = 3 + $a * $b;

4 print $c, "\n";

will print out 11.

• This is different from other computer languages where operators have different mean-
ing depending on the type of variables. E.g. + typically means concatenation if the
arguments are strings.

• To concatenate two strings in Perl one uses the . operator (or variable interpolation
below).

24 CHAPTER 3. BASICS IN PERL

1 $a = "four";

2 $b = "two";

3 print $a . $b, "\n";

will print out fourtwo. and

1 $a = 4;

2 $b = 2;

3 print $a . $b, "\n";

will print out 42.

• = is the assignment operator. Note that all expressions in Perl has a value associated
to them. Also an expression involving an assignment has a value (the value is the
variable which you have assigned to) and can itself be assigned to a variable.

1 $c = $b = $a = 4;

2 print "cb$a\n";

will print out 444, and

1 print $c = $b = 5, "\n";

will print out 5.

3.1.5 Shortcut operators

• Some combinations of operators have shortcuts.

• As an example += is the add and assign operator. It is defined so that $a += $b is
equivalent to $a = $a + $b.

• Similarly $a -= $b is equivalent to $a = $a - $b and $a *= $b is equivalent to
$a = $a * $b, etc.

• ++ is the increment and -- is the decrement operator. They are defined so that $a++

is equivalent to $a = $a + 1 and $a-- is equivalent to $a = $a - 1

1 $a = 10;

2 $a = $a - 1;

3 $a--;

4 $a -= 4;

5 print $a, "\n";

6 $a++;

3.1. VARIABLES AND OPERATIONS 25

7 $a += 10;

8 print $a, "\n";

will print 4 and 15.

3.1.6 Variable interpolation

• For double quoted strings we have seen that the double quote is a special character.

• Another special character is $. When followed by a variable identifier, the contents of
the variable will be inserted:

1 $a = 4;

2 print "The value of \$a is $a\n";

will print out The value of $a is 4. Note that the number will be converted to a
string.

• This is called variable interpolation. It only affects the variable itself so

1 $a = 4;

2 print "The value of \$a+1 is $a+1\n";

will print out The value of $a+1 is 4+1. To perform the addition we can do

1 $a = 4;

2 print "The value of \$a+1 is", $a+1, "\n";

which will print out The value of $a+1 is 5.

3.1.7 Arrays and lists

• An array can be used to store several strings or numbers referenced by a single iden-
tifier.

• An array is identified with the @ character.

1 @numbers = (1, 2, 3, 4, 5);

is an array which contains five numbers which are indexed with a number (0. . . 4). To
access one of the numbers one gives the identifier followed by an index inside square
brackets.

1 $numbers[3] = "four";

2 print "$numbers[0]\n";

26 CHAPTER 3. BASICS IN PERL

• Note that we use a $ to get the contents. @numbers is the whole array, while the
indexation selects one of the scalars in the array, hence the $ sign is used to show that
we are dealing with a scalar.

• Inside the square brackets we can put any expression which evaluates to a number:

1 $a = 2;

2 print "$numbers[$a+$a]\n";

will print out 5, i.e. the expression inside the square brackets is evaluated even if it is
inside a double-quoted string.

• A list can be assigned to an array: (1, 2, 3, 4, 5) is a list. Also (1, $a, 3,

"four", 5) is a list.

• If a list only contains variables, they can be assigned to:

1 @numbers = (1, 2, 3, 4, 5);

2 ($one, $two, $three) = @numbers;

3 print "$two\n";

will print out 2.

• There are a number of functions which acts on arrays, e.g. split, join, push and pop1

• split will take a string and split it into an array of string.

1 $a = "This is a, rather silly, sentence";

2 @words = split ’ ’, $a;

3 print "$words[0] $words[2]";

will print This a, while

1 $a = "This is a, rather silly, sentence";

2 @words = split ’,’, $a;

3 print "$words[0] $words[2]";

will print This is a sentence

• join will take a list or array and concatenate all items into one string.

1 @numbers = (1, 2, 3, 4, 5);

2 $a = join ’:’, @numbers;

3 print "$a\n";

1We will discuss these function in more depth in section 4.1

3.1. VARIABLES AND OPERATIONS 27

will print out 1:2:3:4:5. Note that when an array is interpolated inside a double-
quoted string, it will be implicitly converted into a string with join ’ ’, @anarray

• push will add a scalar to the end of an array.

1 @numbers = (1, 2, 3, 4, 5);

2 push @numbers, 6;

3 push @numbers, 7;

4 print $numbers[5] + $numbers[6], "\n";

will print out 13.

• pop will return the last element of an array and then remove that element from the
array.

1 @numbers = (1, 2, 3, 4, 5);

2 $a = pop @numbers;

3 $b = pop @numbers;

4 print $a + $b, "\n";

will print out 9.

• Note that simply assigning to a non-existing element in an array will expand the array,
adding undefined elements as necessary.

1 @numbers = (1, 2, 3, 4, 5);

2 $numbers[9] = 10;

3 print @numbers + 0, " (@numbers)\n";

• In the previous snippet, the numbers array initially only contains five elements (0-4).
When assigning to element indexed 9, the array is expanded with undefined elements
indexed 5-8, whereafter the last element is assigned the number 10.

• Note that when an array is used where a number is expected as in @numbers + 0,
the number of elements in the array is used. As mentioned above, when an ar-
ray is interpolated in a double-quoted string, the elements are concatenated with
join ’ ’, @numbers and since undefined elements will be written out as empty
strings, the code above will print out 10 (1 2 3 4 5 10).

3.1.8 Hashes

• A hash can also be used to store several numbers and strings in the memory. But they
are not ordered with indices as arrays are. In a hash, the elements are accessed with
user-defined indices, or keys, represented by strings inside curly brackets.

• A hash is identified with the % sign.

28 CHAPTER 3. BASICS IN PERL

1 %numbers;

2 $numbers{’one’} = 1;

3 $numbers{’two’} = 2;

4 $numbers{’three’} = 3;

5 $numbers{’four’} = 4;

6 print $numbers{’four’} + $numbers{’one’}, "\n"

will print out 5.

• An array or a list can be assigned to a hash. In that case the first element will be
interpreted as the index of the second element, the third as the index to the fourth
and so on.

1 %numbers = ("one", 1, "two", 2, "three", 3, "four", 4);

2 $a = "four";

3 print $numbers{$a} + $numbers{’one’}, "\n";

will print out 5.

• Not that we can have any string as key, and any expression given inside the curly
brackets will be converted to a string and used as key.

• Another way to define a hash is to use the => notation

1 %aminos = (’A’ => ’Ala’, ’C’ => ’Cys’, ’D’ => ’Asp’);

2 print "The three letter abbreviation for Alanine is $aminos{’A’}\n";

• The elements in a hash can be extracted into an array, and after
@vals = values %numbers; the vals array will contain the values 1, 2, 4 and
3, but in no predictable order.

• Also the keys of a hash can be extracted into an array and after
@kks = keys %numbers; the kks array will contain the strings "four", "one",
"three" and "two", again in no predictable order (although the same order as the
corresponding values obtained from values).

3.1.9 Follow-up tasks 3-1

1. Execute the code snippets in this section and make sure you understand them.

2. You are strongly encouraged to play around with the examples and test anything that
comes to your mind.

3. Also play around with the following code examples:

3.1. VARIABLES AND OPERATIONS 29

1 $a = 9;

2 $b = 3;

3 $b = $a + $b;

4 print $b, "\n";

5

6 $a = 4;

7 $b = 3;

8 $a = $a + $b;

9 $b = $a + $b;

10 print $a, "\t", $b, "\n";

11

12 $a = 5;

13 $b = 6;

14 $c = 5 + $a * $b;

15 print $c, "\n";

16

17 $a = 3;

18 $b = 2;

19 $c = $a**$b;

20 print $c, "\n";

21

22 $a = 5;

23 $b = 2;

24 $c = $a%$b;

25 print $c, "\n";

26

27 $a = "high";

28 $b = "low";

29 $c = $a . " or " . $b;

30 print $c, "\n";

4. and practice a bit on variable interpolation:

1 $a = ’ \t2’ + 2;

2 $b = ’ t2’ + 2;

3 print $a, "\t", $b, "\n";

4

5 $a = "oj";

6 $b = $a;

7 $c = "$a";

8 $d = ’$a’;

9 print $a, "\t", $b, "\t", $c, "\t", $d, "\n";

10

11 $a = "aj";

12 $b = $a;

13 $c = "$a";

14 $d = ’$a’;

30 CHAPTER 3. BASICS IN PERL

15 print "$a \t $b \t $c \t $d \n";

5. Do you understand all the shorthand notations?

1 $a = 4;

2 $a += 4;

3 $b = 10;

4 $b -= 1;

5 print "$a\t$b\n";

6

7 $a = 4;

8 $a += 2 + 2;

9 $b = 10;

10 $b -= $a;

11 print "$a\t$b\n";

12

13 $a = 3;

14 $a++;

15 $b = $a;

16 $b--;

17 print "$a\t$b\n";

6. If you have spare time, write some small Perl programs and ask another student to
predict their output. Make them as tricky as you want, as long as you understand
them yourself.

3.2 Basic input/output

• Input and output to and from a Perl program is handled by files.

• Files are identified in the program by filehandles.

• There are three standard filehandles which are always automatically defined: STDIN

(standard input), STDOUT (standard output) and STDERR (standard error). They are all
associated with the terminal window from which the Perl script is called.

• The full form of the print function is
print file-handle expression [, expression . . .]
If no filehandle is specified, Perl assumes you mean STDOUT (an example of Perl slang).

• STDOUT is the special file associated with the output to the shell, or terminal window
from which the script is called.

• In a Unix shell (the program which reads your keystrokes in a terminal window) it is
possible to redirect the output from a program to a file or to another program.

3.2. BASIC INPUT/OUTPUT 31

prompt> ./myscript.pl > afile.dat

will take the output and write it to a file called afile.dat. Note: the command
prompt in your terminal window is represented by ’prompt>’.

• STDERR is also connected to the terminal window. If the Perl script in myscript.pl

above contained a statement

1 print STDERR "Goodbye World!";

that message would not be redirected to afile.dat, but would be written to the
window. Note that on a Mac or a Windoze machine there is no difference between
STDOUT and STDERR.

• If you continue typing after you have started a Perl script, what you type may be read
into the program from the STDIN filehandle. The following program will read one line
from STDIN and print it back to STDOUT.

1 #!/usr/bin/perl

2 $line = <STDIN>;

3 print $line;

• The <STDIN> expression (or <>, as Perl assumes you mean STDIN if you do not specify
a file handle) causes the Perl interpreter to wait for input from the terminal, and when
it reads a new line character (or an end-of-file character) it will return a string of the
characters given, including the new-line character.

• Any standard file ends with an end-of-file character. From the shell, you can indicate
the end of the input by pressing ctrl-d. If only an end-of-file character is read by <>,
the value returned is undefined.

• Also STDIN may be redirected:

prompt> ./myscript.pl < afile.dat

read from the file afile.dat instead from the keyboard.

• There is one important difference between <STDIN> and <>. In the latter case the
following

prompt> ./myscript.pl file1.dat file2.dat file3.dat

cause the script to first read from file1.dat and then, when the end of that file is
reached, continue to read from file2.dat etc.

32 CHAPTER 3. BASICS IN PERL

• It is possible to redirect the output of one script to the input of another through a
pipe:

prompt> ./onescript.pl | ./anotherscript.pl

will take the output from onescript.pl and send it as input to the anotherscript.pl
script.

• The following program will ask you to write your name and will then write a greeting:

1 #!/usr/bin/perl

2 print "Hi there! What’s your name?\n";

3 $name = <STDIN>;

4 print "Howdy $name, nice to meet you!\n";

If your name is Frodo the following will happen in your window

prompt> ./hello.pl

Hi there! What’s your name?

Frodo

Howdy Frodo

, nice to meet you!

This is because also the new-line character is included in the string that was read in.
To get rid of the new-line character we can use a function chomp:

1 #!/usr/bin/perl

2 print "Hi there! What’s your name?\n";

3 $name = <STDIN>;

4 chomp $name;

5 print "Howdy $name, nice to meet you!\n";

chomp will remove a trailing new-line character of the scalar given as argument and
the output of the script will look nicer.

• We could have written chomp ($name = <>) which is Perl slang for read a line from
standard input, assign the resulting string to the scalar $name and then send the scalar
as argument to the chomp function.

3.2.1 Follow-up tasks 3-2

1. Execute the code snippets in this section and make sure you understand them.

2. Type in the following Perl script which simply copies lines from the standard input to
the standard output prefixing each line with the line number:

3.2. BASIC INPUT/OUTPUT 33

1 #!/usr/bin/perl

2 $i = 0;

3 while ($line = <>) {

4 $i++;

5 print "$i: $line";

6 }

Note that this script make use of a while-loop and we have not talked about loops yet.
Just see it as a way of reading lines from ’<>’ and print it on the terminal. Name the
script cat.pl and run it in a terminal window.

prompt> ./cat.pl

Type in a couple of lines and end with ctrl-d. Also try the following examples:

prompt> ./cat.pl cat.pl

prompt> ./cat.pl cat.pl cat.pl

prompt> ./cat.pl cat.pl > test.dat

prompt> ./cat.pl < test.dat

prompt> ./cat.pl cat.pl cat.pl | ./cat.pl

Make sure you understand what happens!

3. Change the input statement in the script to $line = <STDIN> and run the above
examples again.

4. Change the original cat.pl to look like this:

1 #!/usr/bin/perl

2 $i = 0;

3 while ($line = <>) {

4 $i++;

5 print STDOUT "(stdout)-$i: $line";

6 print STDERR "(stderr)-$i: $line";

7 }

Now test the following two examples:

prompt> ./cat.pl cat.pl

prompt> ./cat.pl cat.pl > test.dat

and check the content of test.dat. Draw your own conclusions about the difference
between STDOUT and STDERR.

5. With the wget program you can retrieve any document on the web and pipe it into
your program (the first version cat.pl). Try

34 CHAPTER 3. BASICS IN PERL

prompt> wget -q -O - http://www.thep.lu.se/ | ./cat.pl

6. Here is another script which copies the standard input to the standard output.

1 #!/usr/bin/perl

2 @line = (<>);

3 print @line;

All lines are read into the array, one line per element, and then print prints each of
the elements in the array. Run the script in different ways.

7. Change the print line to print "@line"; and run it in different ways. The array is
interpolated by concatenating all elements separated by a space character.

8. Change the print line to print @line + 0, "\n"; In this case the length of the array
is printed. Why? When @line is used in a scalar context (eg. when a number is
expected) the length of the array is used. It is perfectly valid to write an expression
like, $len = @line;, meaning that $len is now the number of elements in @line. We
will see this behaviour in Perl many times.

3.3 Loops and conditions

3.3.1 Condition for one statement

• A statement can be made conditional by ending it with an if -statement.

• In the following, the print expression will only be executed if your name is not the one
of a well-known dark lord:

1 #!/usr/bin/perl

2 print "Hi there! What’s your name?\n";

3 $name = <STDIN>;

4 chomp $name;

5 print "Howdy $name, nice to meet you\n" if ($name ne "Sauron");

• if must be followed by a boolean value which can be true or false. In this case the
expression uses the comparison operator ne which returns true if the strings on each
side are not identical. The expression before if will only be executed if the boolean
expression is true.

• There are several other comparison operators for strings: eq returns true if the strings
on each side are identical, lt (le) if the left side string is lexically less than (or equal
to) the right side string, gt (ge) if the left side string is lexically greater than (or equal
to) the right side string.

3.3. LOOPS AND CONDITIONS 35

• There are also comparison operators for numbers. == tests for equality (note the double
equal signs), != test for inequality. >, >=, <, <=, should be self explanatory.

• The if statement can be replaced by an unless statement for which the preceding
expression will only be executed if the following expression is false:

1 #!/usr/bin/perl

2 print "Hi there! What’s your name?\n";

3 $name = <STDIN>;

4 chomp $name;

5 print "Howdy $name, nice to meet you!\n" unless ($name eq "Sauron");

• die is a useful function which writes the string given as argument to STDERR and
terminate the program with a message:

1 #!/usr/bin/perl

2 print "Hi there! What’s your name?\n";

3 $name = <STDIN>;

4 chomp $name;

5 die "Be gone you evil dictator!" if ($name eq "Sauron");

6 print "Howdy $name, nice to meet you!\n";

3.3.2 Condition for compound statements

• It is possible to make whole blocks of statements conditional.

1 #!/usr/bin/perl

2 print "Hi there! What’s your name?\n";

3 $name = <STDIN>;

4 chomp $name;

5 if ($name eq "Sauron") {

6 print "Be gone you evil dictator.";

7 }

• A block of statements is any number of statements surrounded by curly brackets.

• The boolean expression must be enclosed in parenthesis.

• The block after the if will only be executed if the condition is true.

• If the if-block is directly followed by else and another block the latter will be only
be executed if the if-condition is false.

1 #!/usr/bin/perl

2 print "Hi there! What’s your name?\n";

3 $name = <STDIN>;

4 chomp $name;

36 CHAPTER 3. BASICS IN PERL

5 if ($name eq "Sauron") {

6 print "Be gone you evil dictator.";

7 } else {

8 print "Howdy $name, nice to meet you!\n";

9 }

• It is possible to have more than two alternatives:

1 #!/usr/bin/perl

2 print "Hi there! What’s your name?\n";

3 $name = <STDIN>;

4 chomp $name;

5 if ($name eq "Sauron") {

6 print "Be gone you evil dictator.";

7 } elsif ($name eq "Gandalf") {

8 print "Hello there wizard!\n";

9 } else {

10 print "Howdy $name, nice to meet you!\n";

11 }

• The elsif block will only be executed if the if-condition was false (and possible
previous elsif-conditions were false) and the elsif-condition is true. The optional
final else-block will only be executed if the if-condition and all following elsif-
conditions were false.

3.3.3 What is truth?

• In the real world the truth is a difficult concept, but in Perl the truth is well defined.

• Several things may be used as a conditional (boolean) expression.

• We have already seen comparison expressions: $a == $b or $a ne $b

• Any numerical expression which evaluates to zero is false, any other numerical expres-
sion is true.

• An empty string (""), or a string with a single character zero ("0") is false. Any other
string is true.

• An undefined variable is false.

• Note that it is easy to make a mistake with = and ==. Assignment gives a value which is
may be interpreted as true or false: if ($a = 10) will always execute the following
block since the value is 10 which is true.

3.3. LOOPS AND CONDITIONS 37

3.3.4 Logical operators

• It is possible to combine boolean expressions with operators.

• ! or not will give true if the following expression is false and vice versa.

• || or or will give true if either the lefthand side (lhs) or the righthand side (rhs) is
true.

• && or and will give true if both the lhs and rhs is true.

• xor will give true if either the lhs or rhs are true but not if both are.

• || and or are special in that if the lhs is true the rhs will not be evaluated since it is
already clear that the whole expression is true. This can also be used outside of if

expressions:

1 $len = @arr or die "Zero length array!";

• Similarly for && and and, if the lhs is false, the rhs will not be evaluated.

3.3.5 Loops

• You will always run into situations where you will need to do (almost) the same thing
over and over again. Rather than writing the same code over and over, you may then
make a loop over a block of statements.

• Rather than

1 print "Hello Adam, nice to meet you!\n";

2 print "Hello Bert, nice to meet you!\n";

3 print "Hello Carl, nice to meet you!\n";

4 print "Hello Dave, nice to meet you!\n";

5 print "Hello Eric, nice to meet you!\n";

• You can make a foreach loop:

1 foreach $name ("Adam", "Bert", "Carl", "Dave", "Eric") {

2 print "Hello $name, nice to meet you!\n";

3 }

• foreach will assign to the given scalar each of the elements of the subsequent list (or
array) in turn and execute the following block. After all elements have been used, the
execution continues after the block. The most common use of foreach is to loop over
the elements of an array:

38 CHAPTER 3. BASICS IN PERL

1 @names = ("Adam", "Bert", "Carl", "Dave", "Eric");

2 foreach $name (@names) {

3 print "Hello $name, nice to meet you!\n";

4 }

3.3.6 More loops

• It is possible to control loops with a running index:

1 @names = ("Adam", "Bert", "Carl", "Dave", "Eric");

2 for ($i = 0; $i < 5; $i = $i + 1) {

3 print "Hello $names[$i], nice to meet you!\n";

4 }

This means set $i to 0, then as long as $i is less than 5 execute the following block.
And after each time the block is executed, add 1 to $i.

• The same thing can be accomplished with a while-loop:

1 @names = ("Adam", "Bert", "Carl", "Dave", "Eric");

2 $i = 0;

3 while ($i < 5) {

4 print "Hello $names[$i], nice to meet you!\n";

5 $i = $i + 1;

6 }

• Just as in spoken languages there are usually many different ways of doing the same
thing in a programming language. Perl is almost extreme in this respect.

• until is for while what unless is for if:

1 $i = 0;

2 until ($i == 5) {

3 print "Hello $names[$i], nice to meet you!\n";

4 $i = $i + 1;

5 }

• The ++ operator adds 1 to its argument, $#array gives the index number of the last
element in an array:

1 for ($i = 0; $i <= $#names; $i++) {

2 print "Hello $names[$i], nice to meet you!\n";

3 }

3.3. LOOPS AND CONDITIONS 39

There is also a -- operator and a += and -= operator:

1 for ($i = 0; $i < @names; $i += 2) {

2 print "Hello $names[$i], nice to meet you!\n";

3 }

• If an array is given where a number is expected, the length of the array is used.

• .. is the range operator and ($a .. $b) will give the list ($a, $a+1, $a+2,

...$a+n) where n is the largest number for which $a+n <= $b.

1 foreach $i (0 .. $#names) {

2 print "Hello $names[$i], nice to meet you!\n";

3 }

Note that also ("a" .. "z") makes sense!

• We can use while to loop over all lines from standard input:

1 while ($name = <>) {

2 chomp $name;

3 last if ($name eq "quit");

4 print "Hello $name, nice to meet you!\n";

5 }

In this while loop the scalar $name is assigned, in turn, one line of the standard input
or lines from a file given at the command line (remember the <> function). This loop
condition will end the loop when the end-of-file is reached. In addition, the loop
will terminate if we write quit alone on a line, because of the last instruction. This
instruction will also terminate other loops (foreach, until and for).

• Here we have another instruction to control the loop behavior - next. When this
statement is executed all lines below the next statement are skipped for this turn in
the loop. Hence the below code will sum all even integers from 2 - 10.

1 $sum = 0;

2 for ($i = 1; $i <= 10; $i++) {

3 next unless ($i % 2 == 0);

4 $sum += $i;

5 }

6 print "Sum of even integers [0-10] = $sum\n";

• For many loops you can use either foreach, for, while or until, but the default
choice is often foreach. The rule is to use the construction which is logical for the
problem at hand. for should be used when a more complex iteration scheme is needed.
foreach should be used when you need to do something for each element of a list and
simple iterations. Otherwise use while or until.

40 CHAPTER 3. BASICS IN PERL

3.3.7 The magic of $

• In many cases if you do not give a variable when and where Perl would expect one,
the default variable $ will be used instead.

• By using $ you can write very sloppy code – don’t do that.

• Here are some examples:

1 while (<>) {

2 chomp;

3 print "Hello $_, nice to meet you!\n";

4 }

• Each line from <> will be assigned to $ since no variable is given. chomp will use $

as argument since nothing else is specified. In the print-statement $ is used as any
other scalar variable.

1 foreach ("Adam", "Bert", "Carl", "Dave", "Eric") {

2 print;

3 }

• foreach without a scalar puts each element in the list in $_. print without an
argument will print $_.

• The use of $_ can result in the compact and effective coding, but is often errorprone
and make the code difficult to read. So use it with care!

3.3.8 A complete program

• The following program will count the number of lines and number of characters read
from standard input:

1 #!/usr/bin/perl

2 while ($line = <>) {

3 $len += length $line ;

4 $words += split ’ ’, $line ;

5 $lines++;

6 }

7 print "$len characters and $words words in $lines lines\n";

• with the use of $_ is can look like this

1 #!/usr/bin/perl

2 while (<>) {

3 $len += length;

4 $words += split ’ ’ ;

3.3. LOOPS AND CONDITIONS 41

5 $lines++;

6 }

7 print "$len characters and $words words in $lines lines\n";

Note that the first time $lines, $words and $len are used they are undefined. This
means that when they are used in a numeric expression they are interpreted as zero.

• length is a function which returns the number of characters in a string.

• split will return an array of the words in each line and will be converted to the number
of elements in the array in the addition. More on this function in chapter 4.

3.3.9 New features: the switch statement

Perl 5.10 introduced a native “switch” statement using the given/when mechanism. Below
is an example showing this:

1 use feature ":5.10";

2

3 $seq = <STDIN>;

4 chomp $seq;

5 given($seq) {

6

7 when (’DAP’) {

8 say "Sequence is equal to ’DAP’";

9 continue;

10 }

11

12 when (length($_) <= 3) {

13 say "Sequence contains less than or equal to 3 AA";

14 }

15

16 when (@arr) {

17 say "Sequence is found in the array \@arr";

18 }

19

20 default {

21 say "The default!";

22 }

23 }

• The use feature ":5.10" statement is needed to enable this new feature!

• The when () conditions are checked one by one.

• If a when () condition is true the corresponding block is run and the whole given

block is ended.

42 CHAPTER 3. BASICS IN PERL

• If a continue statement is part of one when block it will jump to check the next when
block even if the former was true.

• The default is just what it is - the default behavior if no when block is true.

You can find more details about given/when here:
http://perldoc.perl.org/perlsyn.html#Switch-Statements

3.3.10 Follow-up tasks 3-3

1. Execute the code snippets in this section and make sure you understand them. You
are, as always, strongly encouraged to play around with the examples and test anything
that comes to your mind.

2. Write a Perl program that reads a number from the standard input and assign it to
a variable, lets call the variable $a. (The number must be a positive integer.) The
program should then repeat the following until $a is equal to 1:

1 IF ($a IS EVEN)

2 DIVIDE $a BY 2.

3 ELSE

4 MULTIPLY $a BY 3 AND ADD 1.

5

6 PRINT $a

Run the program with a number of different input values. Notice how this simple
program gives an almost chaotic output. Hint: if $a is an even number the following
is true: $a % 2 == 0.

3. The file numbers.txt contains a list of numbers. There is one number on each line.
Write a Perl program that reads the file from the standard input and puts the num-
bers into an array. Then display the contents of the array. Hint: use the while loop
for the flow control and the push function to push the numbers onto the array.

4. Loop through the array in the previous task and compute the sum of all the numbers.
Divide the sum by the length of the array. You have now computed mean value of the
numbers in file numbers.txt.

5. Find the biggest value and the smallest value of the numbers in the array.

3.4 Pattern matching

• Conditional expressions are very useful but sometimes == or > is not appropriate for
what you want to do.

http://perldoc.perl.org/perlsyn.html#Switch-Statements

3.4. PATTERN MATCHING 43

• How do you check if a given sequence of letters is included in a string? Well, we can
split the string and then loop over the characters one at the time, and each time we
find a character equal to the first one in our sought after sequence, we check if the
following characters also matches up. But there is a simpler way.

3.4.1 Approximately equal to

• The =~ operator compares the string on the lhs with the regular expression (regexp)
on the rhs and checks if the former matches the latter.

• A regular expression is a sequence of characters enclosed between a pair of slash char-
acters.

• To check if a given string contains the character sequence GAATTC we can do:

1 if ($a =~ /GAATTC/) {

2 print "$a contains the sequence GAATTC\n";

3 }

• This is the simplest example of a regular expression. But they can become arbitrarily
complicated.

3.4.2 Regular expressions

• There are a number of meta characters which have special meaning when used in a
regular expression: []|\$^.+?*{}(). . .

• A sequence of character matches exactly that sequence of characters. A sequence of
character inside square brackets matches any one of those characters:

1 if ($a =~ /B[aei]ll/) {

2 print "’$a’ contains Ball, Bell or Bill\n";

3 }

• | is the or sign and we can use it to match one of several regular expressions:

1 if ($a =~ /Ball|Bell|Bill/) {

2 print "’$a’ contains Ball, Bell or Bill\n";

3 }

• You can already guess why regular expressions can be extremely helpful when looking
through databases with DNA or protein sequences.

44 CHAPTER 3. BASICS IN PERL

3.4.3 Meta characters

• Here are some metacharacters:

– . matches any character except the newline character.

– ^ matches the beginning of a line.

– $ matches the end of a line (except if it is directly followed by an identifier, in
which case the variable is interpolated).

– \w matches any word character (non-white-space, non-punctuation character).

– \W matches any non-word character.

– \s matches any white space character (tab, space, newline).

– \S matches any non-white-space character.

– \d matches any digit.

– \D matches any non-digit.

– \b matches the beginning of a word or the end of a word.

• We can now make a regexp for a Swedish personal ID number:

1 $a = ’This is a ID number : 123456-2345’;

2 if ($a =~ /\b\d\d\d\d\d\d-\d\d\d\d\b/) {

3 print "’$a’ seems to contain an ID number\n";

4 }

• A matching expression can be repeated:

– \d matches one digit.

– \d+ matches one or more consecutive digits.

– \d* matches zero or more consecutive digits.

– \d? matches zero or one digit.

– \d{24} matches exactly 24 consecutive digits.

– \d{24,} matches at least 24 consecutive digits.

– \d{24,42} matches at least 24 but at most 42 consecutive digits.

– \d{,42} matches at most 42 consecutive digits.

• The ID number match can be written

1 $a = ’This is a ID number : 123456-2345’;

2 if ($a =~ /\b\d{6}-\d{4}\b/) {

3 print "’$a’ seems to contain an ID number\n";

4 }

3.4. PATTERN MATCHING 45

• The regexp /[AG]C[GATC]{40,80}[AG]C/ will match any sequence starting with AC or
GC followed by at least forty but at most 80 arbitrary nucleotides and ending with AC

or GC

• A regexp is grouped together with parenthesis. To match a time stamp on the form
hh:mm or hh:mm.ss we can use the regexp /\b\d\d:\d\d(\.\d\d)?\b/. Here the ?

means zero or one matches of the whole expression inside the preceding parenthesis.
Note that to match a point we have to escape the point character, otherwise it is
interpreted as a metacharacter.

• The following will check if the file fed into the standard input is a Perl script:

1 #!/usr/bin/perl

2 if (<> =~ /^#!\s*\/usr\/bin\/perl\b/) {

3 print "This is a Perl script!\n";

4 }

The ^ metacharacter ensures that there is nothing before on the line. Note that the /

character needs to be escaped otherwise it terminates the regexp.

• If we want to match several / characters, the regexp tend to look rather messy. It is,
however possible to pick another delimiter using the the m modifier prefix:

1 #!/usr/bin/perl

2 if (<> =~ m|^#!\s*/usr/bin/perl|) {

3 print "This is a Perl script!\n";

4 }

• We can check how many lines in a Perl script contains only comments:

1 #!/usr/bin/perl

2 <> =~ /^#!\s*\/usr\/bin\/perl/ or die "This is not a Perl script!";

3 while (<>) {

4 $comments++ if (/^\s*#.*$/);

5 }

6 print "There were $comments comment lines in this script\n";

A regexp by itself is slang for $ =∼ /regexp /.

• We can match any typical Swedish surname with like this2:

1 #!/usr/bin/perl

2 while (<>) {

3 $swedes++ if (/\b[A-Z][a-z]*son\b/);

4 }

5 print "There were $swedes Swedes in this file\n";

2For simplicity we will not try to match åäöÅÄÖ characters

46 CHAPTER 3. BASICS IN PERL

The dash inside square brackets indicates a range of characters. (But what if there are
more than one Swedish name on a line?)

• For the rest of this chapter we will try to avoid using the $_ slang as much as possible.

3.4.4 What has been matched?

• Let´s print all Swedish names in a file:

1 #!/usr/bin/perl

2 while ($line = <>) {

3 if ($line =~ /(\b[A-Z][a-z]*son\b)/) {

4 print "$1\n";

5 }

6 }

After a match, the special $1 will contain the sequence matched by a regexp part
enclosed in parenthesis. If there are more than one parenthesis $2 will contain the
sequence matched by the second parenthesis, and so on. (Still if there are several
Swedes on a line, only the first one will be matched.)

3.4.5 Match again

• If the same regexp matching expression is repeated several times, and the regexp is
followed by the character ’g’, the next time it is executed it will try to find the next
match. This is how you catch all the Swedes:

1 #!/usr/bin/perl

2 while ($line = <>) {

3 while ($line =~ /(\b[A-Z][a-z]*son\b)/g) {

4 print "$1\n";

5 }

6 }

• Let’s try to extract web addresses from a file:

1 #!/usr/bin/perl

2 while ($line = <>) {

3 while ($line =~ /\b(www(\.\w+)+)\b/g) {

4 print "$1\n";

5 }

6 }

3.4. PATTERN MATCHING 47

Here $2 would match the inner parenthesis, but as it is quantified by a +, only the last of
the matched sequences are put in $2. Hence for a well known address, print "$1 $2";

would result in www.thep.lu.se .se

3.4.6 Greedy versus tight matching

• The following code will extract the codons in a DNA sequence between any start and
stop codons,

codons.pl

1 #!/usr/bin/perl

2 $seq ="CGGTTAATGGGAATACGCGGATAAGGCGAAATGCACCACGACGCCATAATTTGAAGGATG";

3 # ^^^............^^^ ^^^..................^^^ ^^^

4

5 while ($seq =~ /ATG(([ATGC]{3})+)(TAG|TAA|TGA)/g) {

6 #print "$1\n";

7 push @arr, $1;

8 }

9 print "@arr\n";

10

codons.pl

We start with matching the start codon ATG. Then the thing we want to match
is inside a parenthesis and it is at least one group of three arbitrary nucleotides
([ATGC]{3}). Finally we want to end with either of the three stop codons. Now
if we look by eye, we can see that there are two such matches in the string:
GGAATACGCGGA and CACCACGACGCCATAATT, but if we run the script it will only find
one sequence starting after the first start codon and ending with the last stop codon:
GGAATACGCGGATAAGGCGAAATGCACCACGACGCCATAATT. This is because the + character
matches as many as possible. It is greedy. To stop it from being greedy we need
to add a ? sign after it:

1 while ($seq =~ /ATG(([ATGC]{3})+?)(TAG|TAA|TGA)/g) { print "$1\n"; }

will print both sequences.

3.4.7 Match the matched

• Sometimes we want to match something which has already been matched in the same
regular expression. Say for instance, that we in the previous example only want to
match sequences which has the same codon just after the start codon and just before
the stop codon. We cannot use the $1-$9 special variables as these are not set until
after the matching. Instead we can use the special regexp backreferences \1-\9 as
follows:

codons2.pl

1 #!/usr/bin/perl

2 $seq ="CGGTTAATGGGAATACGCGGATAAGGCGAAATGCACCACGACGCCATAATTTGAAGGATG";

3 # ^^^............^^^ ^^^..................^^^ ^^^

48 CHAPTER 3. BASICS IN PERL

4

5 while ($seq =~ /ATG(([ATGC]{3})([ATGC]{3})*?\2)(TAG|TAA|TGA)/g) {

6 print "$1\n";

7 }

8

codons2.pl

Where we have a parenthesis around the first single codon after the start codon, and
since this is the second parenthesis in the we have added \2 to match it again before
the stop codon.

3.4.8 Variable interpolation in regular expressions

• Although using $2 in the previous expression does not work in the way we wanted,
standard variable interpolation does work as inside double-quoted strings. In this way
we can avoid having all regular expressions hard wired into the code. Variables can
also can be used to make complicated expressions slightly more readable:

codons3.pl

1 #!/usr/bin/perl

2 $seq ="CGGTTAATGGGAATACGCGGATAAGGCGAAATGCACCACGACGCCATAATTTGAAGGATG";

3 # ^^^............^^^ ^^^..................^^^ ^^^

4

5 $cod="([ATGC]{3})";

6 $stop = "(TAG|TAA|TGA)";

7 $start = "ATG";

8 while ($seq =~ /$start(($cod)$cod*?\2)$stop/g) {

9 print "$1\n";

10 }
codons3.pl

3.4.9 Substitutions

• Once we have found a match, we can substitute it with something else. Here is how
you change all Swedish looking names to Svensson:

1 #!/usr/bin/perl

2 while ($input = <>) {

3 $input =~ s/\b[A-Z][a-z]*son\b/Svensson/g;

4 print $input;

5 }

Without the g qualifier only the first name on each line would be changed.

• We can use the matched word in the substitution. Here is how we change all Swedish
names to Danish ones:

1 #!/usr/bin/perl

2 while ($input = <>) {

3.4. PATTERN MATCHING 49

3 $input =~ s/(\b[A-Z][a-z]*)son\b/$1sen/g;

4 print $input;

5 }

• The following will turn any text into a DNA sequence:

1 #!/usr/bin/perl

2 while ($input = <>) {

3 $input =~ s/[^gatcGATC]//g;

4 print $input;

5 }

The ^ normally matches the beginning of a line, but when given as the first character in
a range of characters within brackets, it negates the range of characters. [^gatcGATC]
matches all characters except gatcGATC.

• If you want to substitute characters according to a translation table, there is a special
construction in Perl. To change a DNA sequence into its complement:

1 #!/usr/bin/perl

2 while ($input = <>) {

3 $input =~ tr/gatcGATC/ctagCTAG/;

4 print $input;

5 }

The first character in the left expression is replaced by the first character in the second
and so on.

• We can change all lower case letters into upper case:

1 #!/usr/bin/perl

2 while ($input = <>) {

3 $input =~ tr/[a-z]/[A-Z]/;

4 print $input;

5 }

• Here is a very primitive encryption algorithm:

1 #!/usr/bin/perl

2 while ($input = <>) {

3 $input =~ tr/[a-zA-Z]/[b-zaB-ZA]/;

4 print $input;

5 }

50 CHAPTER 3. BASICS IN PERL

3.4.10 New features: smart matching

Perl 5.10 introduced a new smart match operator called ’∼∼’. The easy way to describe
this new operator is however to show some examples. Note, for the following examples it is
assumed that the line use feature ":5.10"; is present in the beginning of your program.

• Before we start let’s also introduce the say function, which was also introduced in Perl
5.10. It is identical to the print function except that it adds a new-line character to
the print string. The following two expression will produce the same output:

1 #! /usr/bin/perl -w

2 use feature ’:5.10’;

3

4 print "Hello World!\n";

5 say "Hello World!";

• Now let’s look at some smart matching examples!

1 @arr = qw(Perl is way cool);

2 $x = ’is’;

3

4 if (’way’ ~~ @arr) {

5 say ’way exists in @arr’;

6 }

7 if ($x ~~ @arr) {

8 say "$x exists in \@arr";

9 }

Here the ∼∼ checks whether a certain item exists in an array. The loop way of doing
this would look like

1 foreach (@arr) {

2 if ($x eq $_) {

3 say "$x exists in \@arr";

4 last;

5 }

6 }

• We can also do regexp ~~ array

1 if (/oo/ ~~ @arr) {

2 say ’oo can be found in @arr’;

3 }

4

5 if (/c\w{2}l/ ~~ @arr) {

3.4. PATTERN MATCHING 51

6 say ’regexp matched at least one element in @arr’;

7 }

Here we are essentially checking each element in @arr against the regexp. It will be
true if any element matches.

• We can even do array ~~ array

1 @arr1 = qw(Perl is way cool);

2 @arr2 = qw(Perl is way cool);

3

4 if (@arr1 ~~ @arr2) {

5 say "identical arrays";

6 }

• Let’s show a couple of examples involving hashes also.

1 %hash = (’A’ => ’Ala’, ’C’ => ’Cys’, ’Lys’ => ’K’);

2

3 if (’C’ ~~ %hash) {

4 say "key ’C’ exists in %hash";

5 }

6

7 if (/y/ ~~ %hash) {

8 say "key with character ’y’ exists in %hash";

9 }

This is checking keys in the hash. As with arrays one can also do hash ~~ hash which
will check if the two hashes have identical set of keys.

In the perlsyn man page you can find more details).

3.4.11 Follow-up tasks 3-4

1. Execute code snippets in this section and make sure you understand them.

2. Make a Perl script which counts the occurrences of the word the in a file. It should
not count words such as theory, but it should count The.

3. The Unix program find will search through the given directory (and all sub-directories
recursively) and write out all filenames (their relative or full path). ’find /’ will list
all files on the computer with their full path (there are quite a lot of files – hit ctrl-c
if you get tired). Make a script to extract all files containing Perl scripts (i.e. with the
suffix .pl), write out their names (without the full path) and count them.

52 CHAPTER 3. BASICS IN PERL

4. An HTML file contains hyper links on the form
 or
 where the address in dou-
ble quotes is a URL. Create a script which extracts all such URLs from a document.
Try it on the page
http://home.thep.lu.se/~mattias/index.html which you can retrieve with the

wget command3.

You should get out the following links:

/~mattias/images/category_holiday_16.png

/~mattias/images/working-16.png

/~mattias/include/style.css

http://www.lu.se/

http://cbbp.thep.lu.se

mailto:mattias@thep.lu.se

publications/

teaching/fytn06

http://www.biology.lu.se/education/courses/advanced-courses/bioinformatics-and-sequence-analysis-75-cr

teaching/binp13

http://www.createhealth.lth.se/

http://www.lumi.lu.se

mailto:mattias@thep.lu.se

Hint: In a regexp the " character is not special. You need to match the initial href=",
the final " and anything in between (which is not a "). Don’t forget the g-qualifier to
get several matches on each line.

3.5 Filehandles

Filehandles are used to interact with files, console input, socket connections, . . . We have
already encountered the three predefined handles STDIN, STDOUT and STDERR.

3.5.1 User defined filehandles

• To access a file we must create our own filehandle and assign the file to it.

fread.pl

1 #!/usr/bin/perl

2

3 $fname = "protein_sequences.fasta";

4

5 open $MYFILE, $fname or die "Cannot open ’$fname’: $!";

6

7 while ($line = <$MYFILE>) {

8 print "$.: $line";

3like this: wget -q -O - http://home.thep.lu.se/∼mattias/index.html

3.5. FILEHANDLES 53

9 }

10 close $MYFILE;
fread.pl

• This will open the file, assign it to our filehandle $MYFILE and the while loop will
print the content to screen with line numbers.

• It is possible to use the bare word FILE as the filehandle, but it can lead to bugs that
are difficult to track down. Instead we treat the filehandle as a scalar variable (e.g.
$FILE). The use of capitals is just a way of indicating that it is a filehandle.

• The die statement is needed to check the return code from open and inform the user
if something went wrong. It is in general a good idea to check return codes, at least
when debugging.

• $! is a magic variable which contains the last error message given by a built-in Perl
function.

• $. is a magic variable which always contains the number of times <> operator has been
called for the file handle for which it was last called.

• The / in the file name above is in Unix style, but works seamlessly in other operating
systems where other characters are used.

• We can of course write to files as well.

fwrite.pl

1 #!/usr/bin/perl

2

3 $in = "protein_sequences.fasta";

4 $out = "script.out";

5

6 open $INFILE, ’<’, $in or die "Cannot open ’$in’: $!";

7 open $OUTFILE, ’>’, $out or die "Cannot open ’$out’: $!";

8

9 while ($line = <$INFILE>) {

10 print $OUTFILE "$.: $line";

11 }

12 close $INFILE;

13 close $OUTFILE;
fwrite.pl

• Here we have three arguments to the open function. For the $OUTFILE the second
argument, ’>’, is used to tell that it is an output file.

• For $INFILE, ’<’, tells the open function that we open a filehandle to read from. This
is the default behaviour when using only two argument to the open function.

• The expression $line = <$INFILE> means that the scalar $line stores each line of
the input file in the while loop.

• It is also easy to append information to a file:

54 CHAPTER 3. BASICS IN PERL

fappend.pl

1 #!/usr/bin/perl

2

3 $in = "protein_sequences.fasta";

4 $out = "script.out";

5

6 open $INFILE, ’<’, $in or die "Cannot open ’$in’: $!";

7 open $OUTFILE, ’>>’, $out or die "Cannot open ’$out’: $!";

8

9 while ($line = <$INFILE>) {

10 print $OUTFILE "$.: $line";

11 }

12 close $INFILE;

13 close $OUTFILE;
fappend.pl

• The only change is >> instead of >.

3.5.2 Pipes

• It is possible to assign the input and output of other programs to filehandles.

• open $INPIPE, ’-|’, ’program’); can be used to read the output from another
program.

• open $OUTPIPE, ’|-’, ’program’); can be used to write to the standard input of
another program.

• The following program will use wget to open a web page, read from it and extract all
links to other web pages. The output is sent to the sort program which sorts all lines
alphabetically and then pipes it on to the uniq program which removes all duplicate
lines.

hsort.pl†
1 #! /usr/bin/perl -w

2

3 $cmd = ’wget -q -O - http://home.thep.lu.se/~mattias/index.html’;

4 open $INPIPE, ’-|’, $cmd;

5 open $OUTPIPE, ’|-’, ’sort|uniq’;

6 while (<$INPIPE>) {

7 while (/(href|HREF)="([^"]+)"/g) {

8 print $OUTPIPE "$2\n";

9 }

10 }

11 close $INPIPE;

12 close $OUTPIPE;
hsort.pl†

• We must close the output pipe, otherwise that program will continue to wait for
input, and our script will wait for the program to end.

• Normal files are closed automatically when the script ends, but is a good habit to
always close the filehandle when the reading/writing is done.

3.6. HAND-IN EXERCISE 1 55

3.5.3 Follow-up tasks 3-5

1. Execute code snippets in this section and make sure you understand them.

2. Look at the following script and make sure you understand it.
multiply.pl

1 #!/usr/bin/perl

2

3 print STDOUT "Multiply number with *3\n";

4 print STDOUT "Enter a number : ";

5 chomp ($input = <STDIN>);

6

7 if ($input =~ /\D/) {

8 print STDERR "Not a number !!!!\n";

9 } else {

10 print STDOUT ’The answer is ’, $input * 3, "\n";

11 print STDOUT "The result is also save on the external file ’res.txt’\n";

12 open $OUT, ’>’, ’res.txt’ or die "Cannot open file ’res.txt’\n";

13 print $OUT ’The answer is ’, $input * 3, "\n";

14 close $OUT;

15 }
multiply.pl

3. The file numbers.txt contains a few numbers (one per line). Write a small program
that opens the file using a filehandle and then reads all numbers. The program should
also create a new file called numbers2.txt where all numbers have been squared.

4. Write a small program that counts the different amino acids in a file containing protein
sequences. The program should also compute the frequency of each amino acid (i.e.
the fraction compared to the total number of aa). The sequences are found in the
FastA file protein sequences.fasta, at the course web page.

3.6 Hand-in Exercise 1

In this exercise you will make Perl scripts that make use of:

• scalars, arrays and hashes

• basic input and output

• loops

• simple pattern matching

1. Write a Perl program that defines a hash which associates the three letter abbreviation
of each amino acid with its one-letter code. E.g.

1 ALA : A

2 CYC : C ...

56 CHAPTER 3. BASICS IN PERL

Using a foreach loop and the keys function, display the contents of the hash in the
format above. An example output can be found in the file sample-H1-1.txt. The file
aminos.txt contains a list of the abbreviations that should be in your hash. Note:
You do not have to read this file from the Perl program, it is just a handy list of all
abbreviations!

2. Write a Perl program that reads the file protseq.txt from the standard input (STDIN)
and count the number of occurrences for one selected letter. An example output can
be found in the file sample-H1-2.txt. Hint: Use a while loop for the flow control.

3. Write a Perl program that reads the file 1ECD.fasta using a user defined filehandle
and count the number of occurrences for one selected amino acid letter. The pro-
gram should ignore the description line. An example output can be found in the file
sample-H1-3.txt.

4. Write a Perl program that reads the file 1ECD.fasta using a user defined filehandle
and count the number of occurrences for each amino acid. Display result in the form

1 A: 17

2 D: 9

3 ...

