Chapter 6

The CGI and bioperl Modules

6.1 Introduction to chapter [6|

This chapter will mostly concern modules!. One specific module (CGI.pm) and one project
(BioPerl project) containing a lot of modules will be studied in more detail. The use of these
modules requires some knowledge about references, objects and how to invoke a method, so
section is important here. The following list summarizes this chapter.

o Numerical Perl

CGLpm

BioPerl project (part 1)

BioPerl project (part 2)

There will not be enough time to learn everything about the different modules. In fact we
will only be able to very briefly look into the capabilities that they offer. The lectures will
consist of a variety of examples that show how to use the modules. More detailed descriptions
of the modules can be found in various reference documents that will be handed out or that
can be accessed via your computer. Before we start with CGI and BioPerl we will look at
Perl from a numerical point of view.

6.2 Numerical Perl

The purpose of this section is:

- Demonstration that Perl can be used as a programming tool in applications beyond
retrieving/manipulating text data.

We will look into matrices, random numbers, a simple statistics module and PDL.

113

=W N =

114 CHAPTER 6. THE CGI AND BIOPERL MODULES

6.2.1 Matrices

A NzM matrix A is a set of numbers arranged in a rectangular scheme.

a1 a2 ... Qi1pm
a921 929 Ao g
an1 an2 ... ANM

The numbers a;;, are matrix elements and the first index j gives the row number while the
second index k gives the column number. A square matrix has N = M. How do we store
a matrix i Perl? The simplest approach is to create a two-dimensional array or an array of
arrays to be more precise. Remember the section about references and then you will not be
surprised that an array of arrays is nothing but an array of references to other arrays. Below
is an example of a 4x5 matrix of integers stored in the array ©@A.

QA = (
[2, 5, 6, -7, 9],
[1, 4, -6, 7, 10],
(o, 2, 3, 3, 0l,
(1, 1, 4, 2, 8],
)

The overall list is enclosed by parentheses, not square brackets, because we are assigning a
list and not a reference to a list. The square brackets within the list are anonymous arrays
of integers. Now that we have created a matrix, how do we access the elements? One can
use the arrow operator,

print "$A[2]->[1] "; print "$A[3]->[4]\n";

which would print 2 8 (make sure you understand this). But the simplest way is to write,

print "$A[2][1] ";
print "$A[3][4]1\n";

Remember that each element in the array @A is a reference to another array, this means that
you can easily access each row of the matrix A. The example below print the rows of the
matrix A.

matrixl.plf

#! /usr/bin/perl -w
use strict;

my @A = (

© 0w 9 O v

10
11
12

© 0 N O U s W N =

e e T e T e =
0w N O U ke W N = O

© 0w N O o W N =

e
N o= O

6.2. NUMERICAL PERL 115

(2, 5, 6, -7, 91,
(1, 4, -6, 7, 10],
(o, 2, 3, 3, 0],
(1, 1, 4, 2, 8],
)3

foreach my $rowref (@A) {

print "@{$rowref}\n";
}

matrixl.plt

In most of the cases, however, you have data (represented as matrices) stored as files some-
where on you computer. The task is then to read such a matrix into your Perl program.
Assume that you have a file called “matrix.dat” and that the numbers in “matrix.dat” are
arranged in space-separated columns and one row per line. A straight-forward way to store
“matrix.dat” in the Perl array @mat is given by the below code.

matrix2.pl

#! /usr/bin/perl -w
use strict;

Open the external file
open my $MAT, ’<’, ’./matrix.dat’;

my OA;
while (<$MAT>) {

my Q@row = split ’ ’ ;
chomp Qrow;
push @A, \Q@row;

}

close $MAT;

foreach my $rowref (@A) {
print "@{$rowref}\n";
}

matrix2.pl

Note that this example is not robust in the sense that it does not check that all rows contain
the same number of elements and possible blank lines are not ignored. A somewhat more
robust version of “matrix2.pl” is given below.

matrix2r.pl
#! /usr/bin/perl -w
use strict;

Open the external file

open my $MAT, ’<’, ’./matrix.dat’;
my Omat;

my $nrow = O;

my $ncol0;

while (<$MAT>) {

next if (/"\s*$/);
my Q@row = split ’ ’;

13
14
15
16
17
18
19
20
21
22
23
24

© 00 N O U ks W N =

e T e e
N O e W N = O

116 CHAPTER 6. THE CGI AND BIOPERL MODULES

chomp @row;
push @mat, \Q@row;

if ($nrow == 0) {
$ncol0 = scalar Qrow;

} else {
die "Not a matrix\n" unless (scalar Q@row == $ncoll);
}
$nrow++;
}
close $MAT;

print "Found a $nrow X $ncol0 matrix.\n";
matrix2r.pl

Once we have the matrix stored in an array we can start to use it in calculations. Below is a
simple example of computing the trace of a square matrix @A. Can you figure out what the
trace is?

matrix3.pl
#! /usr/bin/perl -w
use strict;
Define a small square matrix
my @A = (
(2, 5, 6, -7, 9],
[1, 4, -6, 7, 101,
(o, 2, 3, 3, 0],
(1, 1, 4, 2, 81,
(4, 1, -5, 2, 221,
);
my $N = scalar 0QA;
my $trace = 0;
for (my $j = 0; $j < $N; $j++) {
$trace += $A[$j1[$5];
}
print "The trace is $trace\n";
matrix3.pl

6.2.2 Random Numbers

There is a built-in function in Perl called rand that produces (a flat) distribution of random
numbers between 0 and 1 if called without an argument. Here follow some examples:

e my $rnd = rand; will produce a random number in the interval 0 < $rnd < 1

e my $rnd = rand 10; will produce a random number in the interval 0 < $rnd < 10

e If we want to produce random integers we can use the int function to get the integer
part. my $rnd = int rand 10; will produce a random integer between 0 and 9.

e my $rnd = int(rand $a) + $b; will produce a random integer in the interval
$b < $rnd < ($a+$b-1)

N O O R W N

© 0 N9 O gse W N

e
= o

2

6.2. NUMERICAL PERL 117

If we want more “fancy” random numbers we can of course write a program that produces
such random numbers or we can use an existing module. The Math: : Random moduld|is such
a module. The following script will print 10 normally distributed random numbers (mean 1
and standard deviation 2).

rndl.pl
#!/usr/bin/perl -w
use strict;
use Math::Random;
my O@rndN = random_normal(10, 1, 2);
print "@rndN\n";
rndl.pl

It is sometimes useful to randomly reshuffie all items of an array. The Math: :Random module
also contains such functions.

rnd2.pl

#!/usr/bin/perl -w
use strict;
use Math::Random;

my Q@lett = ’a’..’z’;

my Q@lettR = random_permutation(@lett);
print "@lett\n";

print "@lettR\n";

my Q@idxR = random_permuted_index(10);

print "@idxR\n";

rnd2.pl

e random_permutation(@array) returns @array, randomly permuted.

e The above code produced the following output
gzodglkwhaebpmuny jtvxcisrft
which of course will change next time it is run!

e Read more about the Math::Random module using perldoc (e.g. perldoc
Math: :Random

6.2.3 Simple Statistics Module

It is often useful to be able to compute simple statistical properties of a series of numbers,
e.g. average, variance etc. There are a few modules available and we are going to look at
the Statistics: :Descriptive module. Here is an example:

statl.pl

#!/usr/bin/perl -w
use strict;

thttp://search.cpan.org/~grommel /Math-Random-0.71/Random.pm

© oo ~ o v = W

I R N = = e e e
@ N R, O © ® N O A W N R O

118 CHAPTER 6. THE CGI AND BIOPERL MODULES

use Math::Random;
use Statistics::Descriptive;

my $N = 1000000;

my $mean = 0;

my $std = 2;

my @rndN = random_normal ($N, $mean, $std);

my $stat = Statistics::Descriptive::Full->new();
$stat->add_data(@rndN) ;

print
"Some statistical properties of $N normally distributed random numbers\n",
"with mean $mean and standard deviation $std:\n\n",

" Mean: ", $stat->mean(), "\n",

" Variance: ", $stat->variance(), "\n",

" Std dev: ", $stat->standard_deviation(), "\n",

" Min: ", $stat->min(), "\n",

" Max: ", $stat->max(), "\n",

"25th Percentile: ", $stat->percentile(25), "\n",

"95th Percentile: ", $stat->percentile(95), "\n";
statl.pl

This module has an object oriented design, where the object $stat is used throughout the
example. Running the above script can produce the following output:

Some statistical properties of 1000000 normally distributed random numbers
with mean 0 and standard deviation 2:

Mean: 0.000703418313303351
Variance: 4.00088577006997
Std dev: 2.00022143025965
Min: -9.54742409658454
Max: 9.58716934834071
25th Percentile: -1.34753794542408249999
95th Percentile: 3.28915144183336949999

6.2.4 The Perl Data Language

If there is a need for a lot of numerical calculations in your Perl script, perhaps the Perl
l)athanguagéﬂ(Fﬂ)L)isthe\Nayix)go.FYonltheInan,pageoffﬂ)Llonecanread:

PDL is the Perl Data Language, a Perl extension that is designed for
scientific and bulk numeric data processing and display. It extends Perl’s
syntax and includes fully vectorized, multidimensional array handling, plus
several paths for device-independent graphics output.

http://pdl.perl.org/

6.2. NUMERICAL PERL 119

PDL is fast, comparable and often outperforming IDL and MATLAB in real world
applications. PDL allows large N-dimensional data sets such as large images,
spectra, etc to be stored efficiently and manipulated quickly.

© 0 N O s W N =

e e e o e e
0w N O gose W N = O

10

11

12

13

14

15

16

17

18

Here is an example with simple matrix operations:

#!/usr/bin/perl -w
use strict;
use PDL;

A 3 by 3 matrix

pdll.pl

my $A = pdl [[1’253];[_1:01_3]: [5’6:7]]’

An identity matrix of size 3
my $B = identity 3;
print $B;

Simple addition
my $C = $A + $B;

Invert the $C matrix
my $D = inv $C;

print $C, $D;

with the following output,

pdll.pl

[
[1 0 0]
[0 1 0]
[0 0 1]
]
[
[2 2 3]
[-1 1 -3]
[5 6 8]
]
[
[5. 0.4 -1.8]
[-1.4 0.2 0.6]
[- -0.4 0.8]
]

e See the PDL home page http://pdl.perl.org/ for more information.

120 CHAPTER 6. THE CGI AND BIOPERL MODULES

6.2.5 Follow-up tasks [6}1

For the follow-up task you will need the matrix.dat file.

1. Write a Perl program that reads the matrix stored in the file matrix.dat and does
the following with this matrix (called A) (in this exercise you should not use the
Statistics::Descriptive or the PDL module):

a. Print the mean value for all columns in A.
b. Print the mean value for all rows in A.
c. Find the maximum value in A.

d. (If you have time) Compute the transpose of A. The transpose matrix B of A is
constructed by changing rows and columns in A (i.e. bj, = ap; Vj, k).

2. Use appropriate modules to perform the following (numerical) tasks;

a. Generate 1000 uniform random numbers between 0 and 1 and calculate the vari-
ance of the numbers.

b. Generate 1000 normal random numbers (mean 0 and std. dev. 1) and calculate
the skewness of this distribution.

c. Generate 1000 random numbers from the exponential distribution (mean 1) and
calculate the median of this distribution.

3. Write a small Perl script the generates the first 50 Fibonacci numbers.

6.3 CGI.pm (Common Gateway Interface)

From the documentation of CGI you can read:

CGI.pm is a stable, complete and mature solution for processing and preparing
HTTP requests and responses. Major features including processing form
submissions, file uploads, reading and writing cookies, query string generation
and manipulation, and processing and preparing HTTP headers. Some HTML
generation utilities are included as well.

CGI.pm performs very well in in a vanilla CGI.pm environment and also comes with
built-in support for mod_perl and mod_perl2 as well as FastCGI.

It has the benefit of having developed and refined over 10 years with input from
dozens of contributors and being deployed on thousands of websites. CGI.pm has
been included in the Perl distribution since Perl 5.4, and has become a de-facto
standard.

To learn about CGIL.pm in more detail there is a reference document available. At the
computer the best way is to use the perldoc utility to read about CGI module. Just type >>
perldoc CGI. Here we will study this module by looking at 5 different examples.

© 0 N9 O s W N =

L O T S S o S e g
VN = O © W N O U A W N = O

10

11

12

13

14

6.3. CGI.PM (COMMON GATEWAY INTERFACE)

6.3.1 Example 1

cgil.pl

121

#! /usr/bin/perl -w

Program description

Small example of how to use the CGI module.

#

Title: cgil.pl

Author(s): Mattias Ohlsson
Description:

#

#

HHHBHAH R R

use strict;
use CGI;

Get a new CGI object
my $cgi = new CGI;

print $cgi->header(),
$cgi->start_html(-title=>’Perl is fun’),
$cgi->h1(°The CGI module in action’),
’Just a simple sentence’,
$cgi->end_html () ;

cgil.pl

This Perl program will produce the following output if you run it directly from the command

line (e.g. >> perl cgil.pl)

Content-Type: text/html; charset=IS0-8859-1

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0org/1999/xhtml" lang="en-US" xml:lang="en-US">
<head>
<title>Perl is fun</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<h1>The CGI module in action</h1>Just a simple sentence
</body>
</html>

However if we point a WWW-browser to this file and access it as an cgi SCYiptEI, the result

will be different (see figure [6.1)).

3How to do this will be explained in more detail in the “Follow-up tasks” section

© 0 N O s W N =

e e T e T e =
® N o s W N = O

122 CHAPTER 6. THE CGI AND BIOPERL MODULES

=] Per is fun - Mozilla Ol=al]
o File Edit View Go Bookmarks Tools Window Help

" @Q O @ Q |%http:x‘;ww.thep.lu.se;»mattias;cgi—hwcgn.pl | [G\Semh l C.:::(;Q
S
The CGI module in action

H Tust a simple sentence

0 4 & EQ | Done =lit=

5

Figure 6.1: The browser looking at cgil.pl.

6.3.2 Example 2

Here is another example of how the CGI module can be used. This script uses four different
form elements:

1. Text entry fields (textfield(...))
2. Checkbox groups (checkbox_group(...))
3. Popup menus (popup menu(...))

4. Submit buttons (submit)

The form is started and ended with the start_form and end_form methods of the CGI object
cgi. The if ($cgi->param()) statement will evaluate to true when the submit button has
been pressed.

cgi2.pl

#! /usr/bin/perl -w

Program description

Small example of how to use the CGI module.

#

Title: cgi2.pl

Author(s): Mattias Ohlsson
Description:

#

#

HHHBHHH R R R

use CGI;
use strict;

my $cgi = new CGI;

print $cgi->header,
$cgi->start_html(-title=>’A simple form example’),

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

6.3. CGI.PM (COMMON GATEWAY INTERFACE)

$cgi->h1(’A simple form example’),
$cgi->start_form,
"What is your name? ", $cgi->textfield(’name’), $cgi->p,
"What is the combination", $cgi->p,
$cgi->checkbox_group(-name=>’words’,
-values=>[’eenie’, ’meenie’,’minie’,’moe’],
-defaults=>[’eenie’]), $cgi->p,
"What is your favorite color? ",
$cgi->popup_menu(-name=>’color’,
-values=>[’red’,’green’,’blue’,’yellow’]),$cgi->p,
$cgi->submit,
$cgi->end_form,
$cgi->hr;

if ($cgi->param()) {
print "Your name is ",$cgi->em($cgi->param(’name’)),$cgi->p,

"The keywords are: ",$cgi->em(join(", ",$cgi->param(’words’))),$cgi->p,
"Your favorite color is ",$cgi->em($cgi->param(’color’)),
$cgi->hr;

}
print $cgi->end_html();

cgi2.pl

123

The result of running this Perl (in a WWW-browser) is shown in figure 6.2, The right figure

shows the result after the submit button has been pressed.

] A simple form - Mozilla [cl= 2] [x] A simple form - Mozilla

ol =] &

. Ol Edit Mew Go Bookmarks Tools Window Help . e Edit Wew Go Bookmarks Tools Wincow Help

" @QQ @ Q [neto: i thep .3 |lq5=mh] CS;‘O " @00 @ Q [hbtp: /e thep.] |[0\3emh] ‘5;0
> | [}

. .
A simple form example A simple form example
Whatis ynurname?l What is your name? [tattias Ohlsson
What is the combination What is the combination
[+ eenie [meenie | minie [~ moe [+ eenie [+ meenie I minie [+ moe

” What is your faverite color? [red | ” What is your favorite color? [blue =]

| Submit Guery | Submit Guery

Your name is Mattins Oklsson
The keywords are: eente, meenie, moe

Your favorite color is &ize

ﬂg@g.nm ESEil ﬂ@@'§|Dnna

Figure 6.2: The browser looking at cgi2.pl (left figure) and the result after pressing the

submit button.

6.3.3 Example 3

It is of course still possible to use all the utilities in Perl to process the information that is
submitted via the forms. The following Perl script takes an amino acid sequence as input
and computes the frequencies of the different amino acids in the chain.

© 00 N O s W N =

[
(=}

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

124 CHAPTER 6. THE CGI AND BIOPERL MODULES

cgi3.pl

#! /usr/bin/perl -w

Program description

#

Title: cgi3.pl

Author(s): Mattias Ohlsson

Description:

Small example of how to use the CGI module.
#

s

use CGI;
use strict;

my $cgi = new CGI;

print $cgi->header,
$cgi->start_html(-title=>’A Simple Example’),
$cgi->h1(’Amino Acid Frequencies’),
$cgi->start_form,
"Enter or paste an amino-acid sequence? ",
$cgi->p,
$cgi->textarea(-name=>’name’, rows=>10, columns=>30),
$cgi->p,
$cgi->submit,
$cgi->end_form,
$cgi->hr;

if ($cgi->param()) {
my $seq = $cgi->param(’name’);
Count ($seq) ;

¥
print $cgi->end_html();

sub Count {
my ($seq)

e_;

my %amino = (
7A1a),7A}’ ICst’JC7, ’ASp’,’D’, 7G1u7’7E7,
)phei’)F), 7G1y)’)G), JHisi’)H),)Ile),)I),
ILYS),7K3’ JLeu7’)L7,)Met)’7MJ’ ’ASH’,’N’,
’Pro’,’P’, ’Gln’,’Q’, ’Arg’,’R’, ’Ser’,’S’,
>Thr’,’T’, ’Val’,’V’, ’Trp’,’W’, ’Tyr’,’Y’);
my Qamino_keys = keys ’%amino;

Make it into an array
my G@seq2 = split //, $seq;
my $len = scalar Gseq?2;

my %count;

foreach my $aa (@seq2) {
chomp $aa;
$count{uc($aa)} += 1;

55
56

58
59
60
61
62
63
64
65
66
67

6.3. CGI.PM (COMMON GATEWAY INTERFACE)

}
print "Frequencies for the different amino acids", $cgi->br;
foreach my $aa (@amino_keys) {
my $oneletter = $amino{$aal;
if (exists $count{$oneletter}) {
my $frac = 100.0 * $count{$oneletter} / $len;
print $cgi->em($aa);
printf ": %5.2f%", $frac;
print $cgi->br;

}

} # End of Count

cgi3.pl

125

The result of this Perl script is shown in figure [6.3]

x A Simple Example - Mozilla

E=ira]

. Fle Ecit Mew Go Bookmarks Took ‘Window Help

d ‘@Q O @ Q [% ntep:rmme tner I[O‘Semh] 4‘550

Enter or paste an aminoe- acid sequence?

MEFLILLFNILCLFFVLAADNHGYGPUGAS (&
QVOHGSNVN [HRLVE GHVVIVENASTELYT
[DAWVTIL SEHEVLAKL QE TRUAVHIESVESL
BHICKMVYHENVRIYKATGNDTVTSYYOFF] =
[YVP [S{ENYETGIVELKDYKHAYHPVDLDI
TKLFDADOVLYE SFNPLTHCINEVHIYDRNY
THPLLEEKIEEL UDQRACELDVNF ISDEDL
EVLWYYECLDNFLYCAYIYVSDGYASLVHL
NETKRLVKESKEXLAPITEED SDEHDEPPE
[x] A Simple Example - Mozilla Olsi=] SKE GKEP S BKEPGPAREHKP SKIPTL SKE]
. Fle Edit “iew Go Bookmarks Tools ‘Window Help 4] Il | o

a @0 O @ Q [Se nete: o enep | [© Search | Cgo Submit Guery
|

Amino Acid Frequencies

]

. . . I Frequencies for the different amino acids =
Amino Acid Frequencies | dsm367%
Asp: 839%
Enter or paste an amino-acid sequence? Gim 178%
Alw A%
THPLLEEE IEELUDARACELDVNE I SDFIL [a] s 2.73%
EVLTYEGLONFLVCAVIYVSDGVASLYHL Thr: 639%
(ETKRLVEKSKKKLAP ITEEDSDKHDEPPE Ty 335%
+| |SEEGKXPGSBEEPGPAREHEPSKIPTL SEE] Gl 671%
PSPELP(LSKLPKSTSPRSPPPPTRPSSPE Frov 10.48%
D¥SK&ASRSKETKTTVVLOESFESTLEETL w7 13%
.| [DPDSPSTSPSEFFTPPESKRTRFHETPADTY Fher 3 445
SPSEYEDTSPGOYP SLPMKRHRLERLELTT] e D
TTVELAPEPKASR IVVDDE GTEADDEETHPY Med: LATH
KEPDSAYIPSILAILVYSLIVEIL Giy: 493%
4] 3 Lys: 8.81%
Arg 4.82%
Suhmit Guery %‘;muﬁsgdg
Ved: 5.87%
Ser: 7.55% =]
=
m 4 &F 1 Done | ﬂh@]] 4 & £ | Done ﬂlL‘:-‘@}

Figure 6.3: The browser looking at cgi3.pl (left figure) and the result after pressing the
submit button (right figure).

The sequence that you type/paste into the textfield is returned in the variable $seq. This
variable is then passed to the sub-routine Count () that computes the frequencies of the
amino acids in the sequence.

© 0 9 O s W N

R R W W W W W W W W W W NN NN NN NN NN e e e e e e e e e e
No= O © 0 9 O U k& W N = O © 00 9 O U k& W N = O © 0 9 O U ks W N = O

126

6.3.4 Example 4

CHAPTER 6. THE CGI AND BIOPERL MODULES

We are now going to create a File Upload Field by using the filefield method. Later we
can access the contents of the uploaded file and process it as we wish. The following Perl

script is an example of this.

cgid.pl

#! /usr/bin/perl -w

Program description

Small example of how to use the CGI module.

#

Title: cgi4.pl

Author(s): Mattias Ohlsson
Description:

#

#

HEHHHHAFHH B HHAFH BB HHRSH BB H RS

use strict;
use CGI;

The error can be redirected to the browser
use CGI::Carp qw(fatalsToBrowser);

my $cgi = new CGI;

print $cgi->header,
$cgi->start_html(-title=>’File Upload Example’),
$cgi->h1(’File Upload Example’),
$cgi->start_multipart_form,
"Give the path to a fasta file ",
$cgi->p,
$cgi->filefield(-name=>’upfile’,-size=>50),
$cgi->p,
$cgi->submit,
$cgi->end_form,
$cgi->hr;

if ($cgi->param()) {
my $filename = $cgi->upload(’upfile’);

print "The fasta file $filename contains the following:",

$cgi->br,$cgi->br;
print "<pre>";
while (my $line = <$filename>) {
print "$line";
}
print "</pre>";
}
print $cgi->end_html();

cgid.pl

The result of this Perl script is shown in figure [6.4]

Note that the variable $filename returned by the method upload() is both a filename and

a file handle!

© 0 N O oA W N

e
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

6.3. CGI.PM (COMMON GATEWAY INTERFACE) 127

[=] File Upload Example - Mozilla |I=1 | [x] File Upload Example - Mozilla =R
. Fle Edit Wew Go Bookmerks Tools Window Help . Fle Edit View Go Bookmarks Todls Window Help
" @Q @ @ O ‘%http £ thep . 1 | [Q‘Semh] cgo " @Q O @ Q |% Rtkp: /. thep. 1 | [.QSeanh] Cgo
r| b
. .

File Upload Example File Upload Example

Give the path to a fasta file Give the path to a fasta file

| Browse | Browse

” Submit Quary | ” Submit Guery

"| Thefastafile IECD fasta contains the following:

5gi|220893|pdb | 1ECO| Hemoglobin (Erythrocruorin, Deoxy)
LSADOISTVOASFDEVECDPYVGILYAVEEADPS IMAKF TOF ACKDLESIKGTAPFETHANRIVGFF SEIT
GELPNIEANVNTF VA SHEPRGYTHDLNNFRAGFYSTMFAHTDFAGAEAAWGATLDTFF GMIF SKIM

|0 = & 0 [ore E=rEy [& & O [oore By

Figure 6.4: The browser looking at cgi4.pl (left figure) and the result after pressing the
submit button (right figure).

6.3.5 Example 5

Another small example using a password_field form element. When you type text in such
a field the characters are printed as “bullets”. In this example your password is validated
against a regular expression. Can you figure out the requirement for a safe password?

cgib.pl

#! /usr/bin/perl -w

Program description

Small example of how to use the CGI module.

#

Title: cgib.pl

Author(s): Mattias Ohlsson
Description:

#

#

H#HBHAHHHHH R R R

use strict;
use CGI;
use CGI::Carp qw(fatalsToBrowser);

my $cgi = new CGI;

print $cgi->header,
$cgi->start_html(-title=>’Password validation form’),
$cgi->h1(’A small utility to validate passwords’);

if ($cgi->param()) {

Get the password
my $passwd = $cgi->param("passwd");

if ($passwd =~ /" (7=.%\d) (7=.x[a-z]) (7=.*%[A-Z]) (?=.x[%\.@#\$]) .{8,}$/) {

print $cgi->p, "PASS: Your password is safe!";

29
30
31
32
33
34
35
36
37
38
39
40
41

128 CHAPTER 6. THE CGI AND BIOPERL MODULES

} else {
print $cgi->p, "WARNING: Your password is unsafe!";
3

} else {

print $cgi->start_form,

$cgi->p, "Type password here ", $cgi->password_field("passwd"),
$cgi->p, $cgi->submit("Validate"), $cgi->reset("Clear"),
$cgi->end_form();

3

print $cgi->end_html();

cgib.pl

6.3.6 Follow-up tasks [6}2

There are some preparations for these follow up tasks. In order to test the Perl scripts for
this exercise you need to run them as CGl-scripts. This means that the WW W-server knows
how to handle the Perl scripts so that when you point a WWW-browser to that specific file
you will see the result of the execution of the Perl script and not just the Perl code itself.
For this to happen all Perl scripts must be placed in a special directory in your (computer)
account. This directory is called public_html and is placed in the top-most level in your
directory tree. If you do not have such a directory you must create it. The make sure that it
has the right set of permissions by running a chmod 755 command. The following example
shows how to do it:

bim0> cd
bim0> mkdir public_html
bimO> chmod 755 public_html

The example files used in this lecture are available as cgil.perl, ..., cgib.perl. Note
that you have to rename these scripts to cgil.pl, cgi2.pl, ... because the WWW-server
only accepts .pl (or .cgi) as extensions of cgi-scripts.

Complete the following tasks:

1. At pages 33-34 in the CGIL.pm reference document the Radio Button Group is de-
scribed. Add such a button group in the cgi2.pl Perl script and print out the selected
button when the submit button is pressed.

2. Create a Perl script that uploads a fasta file, shows the contents in the WWW-browser
and count the number of Glysine in the sequence.

3. Create a small Perl script that uploads a clustalw alignment file and then converts that
file to a phylip format. The result should be shown in the WWW-browser.

HINT 1: To get a well-formatted output in the www-browser one can use the <pre> ...
</pre> html tag (see cgid.pl). There is also a module called HTML: : FromText that one
can use.

6.4. BIOPERL PROJECT (PART 1) 129

HINT 2: In order to debug your cgi programs you may find the CGI: :Carp module useful.
See cgid.pl for an example of how it can be used.

6.4 BioPerl project (Part 1)

What is BioPerl? The following can be read on their FAQ:

What is BioPerl?

BioPerl is a toolkit of perl modules useful in building bioinformatics solutions in Perl.
It is built in an object-oriented manner so that many modules depend on each other
to achieve a task. The collection of modules in the bioperl-live repository consist of
the core of the functionality of bioperl. Additionally auxiliary modules for creating
graphical interfaces (bioperl-gui), persistent storage in RDMBS (bioperl-db), running
and parsing the results from hundreds of bioinformatics applications (Run package),
software to automate bioinformatic analyses (bioperl-pipeline) are all available as Git
modules in our repository.

The current version of BioPerl is 1.6.9 (and this version is available on your computers). The
homepage of BioPerl is http://www.bioperl.org and the documentation for the modules
can be found at http://doc.bioperl.org/releases/bioperl-1.6.1

We will start to look at two modules:

1. Bio::Seq - Sequence object with features

2. Bio::SeqIO0 - Handler for SeqlO formats

6.4.1 Bio::Seq

Seq, which is the central sequence object in BioPerl, is a sequence with sequence features
placed on it. The Seq object also contains a PrimarySeq object. In summary

1. PrimarySeq = just the sequence and its names, nothing else.

2. Seq = A sequence and a collection of sequence features.

Tied to the Seq object are methods that can be used in order to extract information about
the sequence. There is also a method that creates a new Seq object. new:

Title : new

Usage : $seq = Bio::Seq->new(-seq => ’ATGGGGGTGGTGGTACCCT’,
-id => ’human_id’,
-accession_number => ’AL000012°,

)

Function: Returns a new Seq object from

http://www.bioperl.org
http://doc.bioperl.org/releases/bioperl-1.6.1

130 CHAPTER 6. THE CGI AND BIOPERL MODULES

basic constructors, being a string for the sequence
and strings for id and accession_number
Returns : a new Bio::Seq object

If you have sequences stored in a Seq object, there are methods available to find information
about the sequences. Below is a subset of such methods.

The following methods return scalars

$seqobj->seq();
$seqobj->subseq(5,10) ;
$seqobj->accession_number();
$seqobj->length()
$seqobj->desc();
$seqobj->alphabet () ;
$seqobj->primary_id () ;

string of sequence

part of the sequence as a string

when there, the accession number

length

description

string, either ’dna’,’rna’,’protein’

a unique id for this sequence regardless
of its display_id or accession number
the human readable id of the sequence

H o HF HOH O H HH

$seqobj->display_id();

The method display_id() has the following description:

Title : display_id

Usage : $id = $obj->display_id or $obj->display_id($newid) ;

Function: Gets or sets the display id, also known as the common name of
the Seq object.

The semantics of this is that it is the most likely string
to be used as an identifier of the sequence, and likely to
have "human" readability. The id is equivalent to the LOCUS
field of the GenBank/EMBL databanks and the ID field of the
Swissprot/sptrembl database. In fasta format, the >(\S+) is
presumed to be the id, though some people overload the id
to embed other information. Bioperl does not use any
embedded information in the ID field, and people are
encouraged to use other mechanisms (accession field for
example, or extending the sequence object) to solve this.

Notice that $seq->id() maps to this function, mainly for
legacy/convenience issues.

Returns : A string

Args : None or a new id

Let us show an example of how to use this method. We will use the SeqI0 module (see
below for more details) to read a set of sequences stored in fasta format and the print the
ID for these sequences. Here is the code for doing this:

bp-exl.pl
#! /usr/bin/perl -w

© oo ~ o v = W

NN NN NN R R R R R e e s
S A ®W N R O © ® N O A W N R~ O

10

11

12

6.4. BIOPERL PROJECT (PART 1) 131

Program description #####i##

#

Title: bp_exl.pl

Author(s): Mattias Ohlsson

Description:

A small script that reads a sequences stored in fasta format and
then prints the ID for these sequences. BioPerl is used.

#

HHHEEH R

use strict;
use Bio::8eql0;

Create an object that points to the file containing fasta sequences
my $in = Bio::Seql0->new(-file => "segs.fasta",
-format => ’Fasta’);

Make a loop over all the sequences
while (my $seq = $in->next_seq()) {
my $Id = $seq->display_id();
my $desc = $seq->description();

print "$Id\n";
print "$desc\n";

bp-exl.pl

The result from running this script is shown below. Note, the efficency in reading and parsing
the fasta file. This leads us to the Bio: :SeqI0 module.

gi1239758|bbs | 68379

glucocorticoid receptor, GR [human, Peptide Partial, 394 aal
gi1239752|bbs | 68871

PML-3=putative zinc finger protein [human, Peptide, 802 aal
gi|238775|bbs|65126

putative tyrosine kinase receptor=UF0 [human, NIH3T3, Peptide, 894 aal
gi1239006 | bbs |65162

alpha(1,3)-fucosyltransferase, ELFT [human, Peptide, 400 aal
g11237597 | bbs | 60089

putative adhesion molecule=ADMLX [human, Peptide, 679 aal
g11237995|bbs | 62046

NK-1 receptor [human, lung, Peptide, 407 aal

6.4.2 Bio::SeqlO

The SeqI0 object is the “interface” that should be used in order to “load” external files into
Seq objects. The SeqI0 module also handles the complexity of parsing sequences of many
standard formats that have emerged over the years. We start by looking at the method
Bio: :SeqI0->new in more detail. Here are two common ways of using this methodﬂ

4See also the Bio::SeqlO Howto

132 CHAPTER 6. THE CGI AND BIOPERL MODULES
$seqI0 = Bio::Seql0->new(-file => ’filename’, -format => $format);
$seqI0 = Bio::SeqI0->new(-fh => *FILEHANDLE, -format => $format);

The returned object is a Bio: :SeqlI0, that you can think of as a collection of sequences. In

the first example the sequences are read from the file filename with the format $format. In
the second example we are instead reading from a supplied file-handle. The new() method

accepts the following parameters:

-fi

-fh

le

A file path to be opened for reading or writing. The usual Perl
conventions apply:

’file’ # open file for reading
’>file’ # open file for writing
’>>file’ # open file for appending
’+<file’ # open file read/write
’command |’ # open a pipe from the command
’| command’ # open a pipe to the command

You may provide new() with a previously-opened filehandle. For
example, to read from STDIN:

$seqI0 = Bio::SeqI0->new(-fh => *STDIN);
Note that you must pass filehandles as references to globs.

If neither a filehandle nor a filename is specified, then the
module will read from the Q@ARGV array or STDIN, using the familiar
<> semantics.

A string filehandle is handy if you want to modify the output in
the memory, before printing it out. The following program reads in
EMBL formatted entries from a file and prints them out in fasta
format with some HTML tags:

use Bio::Seql0;
use I0::String;
my $in = Bio::Seql0->new(’-file’ => "emblfile" ,
’-format’ => ’EMBL’);
while (my $seq = $in->next_seq()) {
the output handle is reset for every file
my $stringio = IO::String->new($string);
my $out = Bio::SeqI0->new(’-fh’ => $stringio,
’-format’ => ’fasta’);
output goes into $string
$out->write_seq($seq);
modify $string
$string =" s|(>) (\w+) |$1$2|g;
print into STDOUT
print $string;

6.4. BIOPERL PROJECT (PART 1) 133
-format
Specify the format of the file. Supported formats include:
AB1 ABI tracefile format
ABI ABI tracefile format
ALF ALF tracefile format
CTF CTF tracefile format
EMBL EMBL format
EXP Staden tagged experiment tracefile format
Fasta FASTA format
Fastq Fastq format
GCG GCG format
GenBank GenBank format
PIR Protein Information Resource format
PLN Staden plain tracefile format
SCF SCF tracefile format
ZTR ZTR tracefile format
ace ACeDB sequence format
game GAME XML format
locuslink LocusLink annotation (LL_tmpl format only)
phd phred output
qual Quality values (get a sequence of quality scores)
raw Raw format (one sequence per line, no ID)
swiss Swissprot format
If no format is specified and a filename is given then the module
will attempt to deduce the format from the filename suffix. If
this is unsuccessful then Fasta format is assumed. The format name
is case insensitive. ’FASTA’, ’Fasta’ and ’fasta’ are all valid
suffixes.
The Perl script bp_ex1.pl used the new method to read the file seqs.fasta. We now

understand how that works!

Two other useful methods in SeqI0 are next_seq and write_seq. With these we can read

and write sequences. The description is as follows:

Title : next_seq
Usage : $seq = stream->next_seq
Function: Reads the next sequence object from the stream and returns it.

Certain driver modules may encounter entries in the stream
that are either misformatted or that use syntax not yet
understood by the driver. If such an incident is
recoverable, e.g., by dismissing a feature of a feature
table or some other non-mandatory part of an entry, the
driver will issue a warning. In the case of a
non-recoverable situation an exception will be thrown. Do
not assume that you can resume parsing the same stream
after catching the exception. Note that you can always turn
recoverable errors into exceptions by calling
$stream->verbose(2) .

© 00 N O s W N =

[R R N = T e e
@ N R O © B N O oA W N R O

134 CHAPTER 6. THE CGI AND BIOPERL MODULES

Returns : a Bio::Seq sequence object

Args : none
Title : write_seq
Usage : $stream—>write_seq($seq)

Function: writes the $seq object into the stream
Returns : 1 for success and O for error
Args : Bio::Seq object

The following Perl program reads the file seqs.fasta and creates a new file called
seqs.gbank that stores the sequences in the GenBank format. Only 4 lines of code!

bp_ex2.pl
#! /usr/bin/perl -w

Program description

#

Title: bp_ex2.pl

Author(s): Mattias Ohlsson

Description:

A small script that converts a fasta file to a swissprot file
using the Bio::SeqI0 module in BioPerl.

#

HHHH

use strict;
use Bio::Seql0;

my $in = Bio::Seql0->new(-file => ’seqs.fasta’, -format => ’Fasta’);
my $out = Bio::Seql0->new(-file => ’>seqs.gbank’, -format => ’GenBank’);
my $out2 = Bio::SeqI0->new(-file => ’>seqs.swiss’, -format => ’Swiss’);

while (my $seq = $in->next_seq()) {
$out->write_seq($seq);
$out2->urite_seq($seq);

bp_ex2.pl

The first entry in seqs.fasta looks like,

>gi|239758|bbs|68379 glucocorticoid receptor, GR [human, Peptide Partial, 394 aal
MDSKESLTPGREENPSSVLAQERGDVMDFYKTLRGGATVKVSASSPSLAVASQSDSKQRRLLVDFPKGSV
SNAQQPDLSKAVSLSMGLYMGETETKVMGNDLGFPQQGQISLSSGETDLKLLEESIANLNRSTSVPENPK
SSASTAVSAAPTEKEFPKTHSDVSSEQQHLKGQTGTNGGNVKLYTTDQSTFDILQDLEFSSGSPGKETNE
SPWRSDLLIDENCLLSPLAGEDDSFLLEGNSNEDCKPLILPDTKPKIKDNGDLVLSSPSNVTLPQVKTEK
EDFIELCTPGVIKQEKLGTVYCQASFPGANIIGNKMSAISVHGVSTSGGQMYHYDMNTASLSQQQDQKPI
FNVIPPIPVGSENWNRCQGSGDDNLTSLGTLNFPGRTVFSNGYS

and the corresponding entry in the new file seqgs.gbank is,

6.4. BIOPERL PROJECT (PART 1)

135

LOCUS

DEFINITION glucocorticoid receptor,

ACCESSION
FEATURES
ORIGIN

61
121
181
241
301
361

gi1239758|bbs | 68379

unknown

mdskesltpg
1lvdfpkgsv
lleesianln
vklyttdgst
snedckplil
ycqasfpgan
senwnrcqgs

394 aa

Location/Qualifiers

reenpssvla
snaqqpdlsk
rstsvpenpk
fdilagdlefs
pdtkpkikdn
iignkmsais
gddnltslgt

qergdvmdfy
avslsmglym
ssastavsaa
sgspgketne
gdlvlsspsn
vhgvstsggq
Infpgrtvfs

ktlrggatvk
getetkvmgn
ptekefpkth
spwrsdllid
vtlpgvktek
myhydmntas
ngys

linear
GR [human, Peptide Partial, 394 aal

vsasspslav
dlgfpqqgqi
sdvsseqghl
encllsplag
edfielctpg

1sqqqdqgkpi

UNK

asqgsdskqrr
slssgetdlk
kgqtgtnggn
eddsfllegn
vikqgeklgtv
fnvippipvg

//

Compare this program to the one that you (possible) wrote in one of the hand-in exercises
of the second week.

6.4.3 Bio:DB: :GenBank

There are modules in the BioPerl project that makes it easy to get sequences from many dif-
ferent databases (e.g. GenBank, GenPept, Swissprot etc). We will now look at the module for
retrieving sequences from GenBank. Here are some useful methods for a Bio: :DB:GenBank
object:

get_Seq_by_id

Title : get_Seq_by_id
Usage : $seq = $db->get_Seq_by_id(’ROA1_HUMAN’)
Function: Gets a Bio::Seq object by its name

Returns : a Bio::Seq object
Args : the id (as a string) of a sequence
Throws "id does not exist" exception

get_Seq_by_gi

Title : get_Seq_by_gi
Usage : $seq = $db->get_Seq_by_gi(’4058307);
Function: Gets a Bio::Seq object by gi number

Returns : A Bio::Seq object
Args : gi number (as a string)
Throws "gi does not exist" exception

get_Stream_by_id

Title : get_Stream_by_id

Usage : $stream = $db->get_Stream_by_id([$uidl, $uid2]);
Function: Gets a series of Seq objects by unique identifiers
Returns : a Bio::SeqlI0 stream object

Args : $ref : a reference to an array of unique identifiers for

the desired sequence entries

© 0 N9 O s W N

-
[=}

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

136 CHAPTER 6. THE CGI AND BIOPERL MODULES

get_Stream_by_gi

Title : get_Stream_by_gi

Usage : $seq = $db->get_Seq by_gi([$gil, $gi2]);

Function: Gets a series of Seq objects by gi numbers

Returns : a Bio::SeqlI0 stream object

Args : $ref : a reference to an array of gi numbers for
the desired sequence entries

Note : For GenBank, this just calls the same code for get_Stream_by_id()

The following Perl script downloads two GenBank sequences and displays them on the screen

in the GenBank format.

bp_ex3.pl
#! /usr/bin/perl -w

Program description

Title: bp_ex3.pl
Author(s): Mattias Ohlsson
Description:

H H H HHHEH

S
use strict;
use Bio::Seql0;

use Bio::DB: :GenBank;

my $gb = Bio::DB::GenBank->new() ;
my $out = Bio::SeqIlO0->new(-fh => *STDOUT, -format => ’GenBank’);

my $seqio = $gb->get_Stream_by_gi([’AA484435°, ’AA484440°]);

while (my $seq = $seqio->next_seq()) {
$out->write_seq($seq);

bp-ex3.pl

A small perl program that downloads two GenBank records from NCBI.
The records are displayed on the screen. Bio::DB:GenBank is used here.

The result of running this program (only the first GenBank entry):

LOCUS AA484435 461 bp mRNA linear EST 08-JAN-2011

DEFINITION nf07c12.s1 NCI_CGAP_Lil Homo sapiens cDNA clone IMAGE:913078
similar to SW:A1BG_HUMAN P04217 ALPHA-1B-GLYCOPROTEIN, mRNA
sequence.

ACCESSION AA484435

6.4. BIOPERL PROJECT (PART 1)

VERSION
DBSOURCE
KEYWORDS
SOURCE
ORGANISM

REFERENCE
CONSRTM
TITLE

JOURNAL
COMMENT

FEATURES
source

ORIGIN

AA484435.1 GI:2213248
BioSample accession LIBEST_000884
EST.
Homo sapiens (human)
Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
Catarrhini; Hominidae; Homo.
1 (bases 1 to 461)
NCI-CGAP http://www.ncbi.nlm.nih.gov/ncicgap
National Cancer Institute, Cancer Genome Anatomy Project (CGAP),
Tumor Gene Index
Unpublished
Contact: Robert Strausberg, Ph.D. Email: cgapbs-r@mail.nih.gov
Tissue Procurement: David E. Kleiner, M.D., Ph.D., Rodrigo F.
Chuaqui, M.D., Michael R. Emmert-Buck, M.D., Ph.D. cDNA Library
Preparation: David B. Krizman, Ph.D. cDNA Library Arrayed by: Greg
Lennon, Ph.D. DNA Sequencing by: Washington University Genome
Sequencing Center Clone distribution: NCI-CGAP clone distribution
information can be found through the I.M.A.G.E. Consortium/LLNL
at: www-bio.llnl.gov/bbrp/image/image.html Insert Length: 621 Std
Error: 0.00 Seq primer: -41ml13 fwd. ET from Amersham High quality
sequence stop: 417.
Location/Qualifiers
1..461
/organism="Homo sapiens"
/lab_host="DH10B"
/db_xref="taxon:9606"
/clone_lib="LIBEST_000884 NCI_CGAP_Lil"
/mol_type="mRNA"
/clone="IMAGE:913078"
/note="Vector: pAMP10; mRNA made from normal liver
hepatocytes, cDNA made by oligo-dT priming.
Non-directionally cloned. Size-selected on agarose gel,
average insert size 600 bp. Reference: Krizman et al.
(1996) Cancer Research 56:5380-5383."
/tissue_type="liver"

1 ggtcgacctc gatggcgcca gtgtcctgga tcaccgeccgg cctgaaaaca acagcagtgt
61 gccgaggtgt gectgeggggt gtgacttttc tgctgaggeg ggagggegac catgagtttc
121 tggaggtgcc tgaggcccag gaggatgtgg aggccacctt tccagtccat cagcectggea
181 actacagctg cagctaccgg accgatgggg aaggcgccct ctctgagccc agcgctactg
241 tgaccattga ggagctcgct gcaccaccac cgcctgtget gatgcaccat ggagagtcct
301 cccaggtcct gcaccctgge aacaaggtga ccctcacctg cgtggetcce ctgagtggag
361 tggacttcca gctacggecge ggggagaaag agctgectggt acccaggagec agcaccagcc
421 cagatcgcat cttctttcac ctgaacgcgg tggccctggg g

//

137

6.4.4 Follow-up tasks [6}3

The example files used in this lecture are available as bp_ex1.pl,
In addition to that you also need the set of fasta sequences, available as seqs.fasta.

Complete the following tasks:

bp_ex2.pl and bp_ex3.pl

1. Modify the perl script bp_ex1.pl so that the alphabet and the length of the sequence
are printed together with the ID.

2. Make a Perl script that can convert a fasta sequence (or sequences) to one of the
following formats:

=W N =

138 CHAPTER 6. THE CGI AND BIOPERL MODULES

1. EMBL
2. Swissprot
3. GCG

The format to use should be selected using command line options. Read the fasta file
from standard input and display the result on standard output.

3. Make a Perl script that creates a text field using CGI.pm where the user can enter
a GenBank accession number. Use Bio:DB:GenBank to download this sequence and
display it in EMBL format in the WWW browser.

HINT 1: To get a well-formatted output in the www-browser one can use the <pre> ...
</pre> html tag (see cgi4.pl). There is also a module called HTML: : FromText that one
can use.

HINT 2: In order to debug your cgi programs you may find the CGI: :Carp module useful.
See cgi4.pl for an example of how it can be used.

NOTE: You can find more information about the different modules and their methods
if you look at http://doc.bioperl.org/releases/bioperl-1.6.1 or using the perldoc
command (e.g. >> perldoc Bio::DB::GenBank)

6.5 BioPerl project (Part 2)

We will now continue to examine some other modules in the BioPerl project, where the focus
will be on sequence alignment and its subsequent analysis. Specifically we will look at the
following modules:

1. Bio::SearchIO: This module is used for parsing blast and fasta reports.
2. Bio::Tools: :Run: :RemoteBlast Remote execution of blasts at NCBI.
3. Bio::Tools::AlignI0 Modules for handling multiple alignments (similar to SeqlO).

4. Bio: :Tools: :0ddCodes Producing an alternative alphabet coding.

6.5.1 Bio::SearchlO

The module Bio: :SearchI0 can be used to parse BLAST reports. For more information
read the SearchlO Howto. The following Perl program does similar things as your parse.pl
that you worked on last week.

bp ex4.plt

#! /usr/bin/perl -w

Program description #####i##
#

http://doc.bioperl.org/releases/bioperl-1.6.1

© 0w 9 O v

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

6.5. BIOPERL PROJECT (PART 2) 139

Title: bp_ex4.pl

Author(s): Mattias Ohlsson

Description:
A small Perl program that parses the result of a blast run. The
Bio::Search and Bio::SearchIO0 is used.

H H HH HH

HEHHHHRFHH B HHAFH B R HRR SR H R R

use strict;
use Bio::SearchIO;

my $in = new Bio::SearchIO(-fh => *STDIN, -format => ’blast’);

We only have one report!
my $result = $in->next_result();

while (my $hit = $result->next_hit()) {
while (my $hsp = $hit->next_hsp) {
if ($hsp->percent_identity >= 80 &% $hsp->percent_identity <= 85) {

print "======= ID: ", $hit->name, "=======\n";
printf "=> Identities: %5.2f%%\n", $hsp->percent_identity;

my $q = $hsp->query_string;
my Qqarr = ($q =" /(.{1,60})/g);
my $sQ = $hsp->start(’query’);

my $s = $hsp->hit_string;
my @sarr = ($s =~ /(.{1,60})/g);
my $sS = $hsp->start(’subject’);

my $hom = $hsp->homology_string;
my @homarr = ($hom =~ /(.{1,60})/g);

for (my $i = 0; $i < scalar @qarr; $i++) {
printf "Query: %4d $qarr([$i] %4d\n", $sQ, $sQ+length($qarr[$i])-1;
printf " %4s $homarr [$il\n", ’’;
printf "Subj: %4d $sarr[$i] %4d\n\n", $sS, $sS+length($sarr[$il)-1;

bp ex4.plf

(See appendix A for the result when running this program on the 1TEN_blastp.res file.) The
high scoring pair ($hsp) obtained by the next_hsp method has many methods. Here are
some:

$hsp->evalue
$hsp->length
$hsp->gaps
$hsp->frac_identical
$hsp->frac_conserved

$hsp->query_string

© 00w N O s W N =

Wow W W W W W W NN NN NN NN NN =R R s s e e e
N O O ke W N H O © 0N U R W N H O O N U e W N = O

140 CHAPTER 6. THE CGI AND BIOPERL MODULES

$hsp->hit_string
$hsp->homology_string
$hsp->start (Carg’)
$hsp->end (’arg’)

You can find more information looking at the documentation for the
Bio::Search: :HSP: :HSPI module (e.g >> perldoc Bio::Search::HSP::HSPI).

FASTA reports can also be analyzed using the Search/SearchI0 modules.

6.5.2 Bio::Tools::Run::RemoteBlast

This module makes it possible to run a remote blast at NCBI. The documentation for this
module is not that good. However one can find an example similar to the one below.

bp exb.pl.plt

#! /usr/bin/perl -w

Program description

#

Title: bp_ex5.pl

Author(s): Mattias Ohlsson

Description:

A Perl program that can run a remote blast at NCBI. The
module Tools::Run::RemoteBlast is used.

#

B s S s

use strict;
use Bio::Seql0;
use Bio::Tools::Run::RemoteBlast;

Get the query sequence

my $Seq_in = Bio::SeqI0->new (-file => ’1TEN.fasta’,
-format => ’fasta’);

my $query = $Seq_in->next_seq();

Remote-blast "factory object" creation
my $factory = Bio::Tools::Run::RemoteBlast->new(

-prog => ’blastp’,
-data => ’nr’,
-expect => ’le-67,

-readmethod => ’SearchI0’);

Here we submit the query sequence to the Blast server
$factory->submit_blast ($query) ;

print STDERR "waiting...";
Loop over all possible remote id’s

while (my @rids = $factory->each_rid) {
printf "Debug: No rids %d\n", scalar @rids;

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

6.5. BIOPERL PROJECT (PART 2)

foreach my $rid (@rids) {
my $rc = $factory->retrieve_blast($rid);

unless (ref $rc) {

retrieve_blast returns -1 on error
if ($rc <0) {
$factory->remove_rid($rid) ;

}

retrieve_blast returns O on ’job not finished’
sleep 5;
print STDERR ".";

} else {

Blast done
$factory->remove_rid($rid) ;
my $result = $rc->next_result();

Save the output
my $filename = ’blast.out’;
$factory->save_output ($filename) ;

Analyse the blast result
print "Database: ", $result->database_name(), "\n";
print "\nQuery Name: ", $result->query_name(), "\n\n";
while (my $hit = $result->next_hit) {
while (my $hsp = $hit->next_hsp) {
if ($hsp->percent_identity >= 95 && $hsp->percent_identity <= 99) {
print "======= ID: ", $hit->name, "=======\n";
printf "=> Identities: %5.2f%%\n\n", $hsp->percent_identity;

my $q = $hsp->query_string;
my @q = ($q =" /(.{1,60})/g);
my $sQ = $hsp->start(’query’);

my $s = $hsp->hit_string;
my @s = ($s =" /(.{1,60})/g);
my $sS = $hsp->start(’subject’);

my $hom = $hsp->homology_string;
my @hom = ($hom =" /(.{1,60})/g);

for (my $i = 0; $i < scalar @q; $i++) {
printf "Query: %4d $ql[$il %4d\n", $sQ, $sQ+length($q[$il)-1;
printf " %4s $hom[$il\n", ’7;
printf "Subj: %4d $s[$i] %4d\n\n", $sS, $sS+length($s[$i])-1;
}

141

© 00 9 O U ks W N =

e e e o e
0w N O ks W N = O

142 CHAPTER 6. THE CGI AND BIOPERL MODULES

3

bp exb.pl.plt

This program reads the fasta file "1 TEN.fasta’ using SeqI0 and this sequence object is then
used to create a RemoteBlast object called $factory. Using this $factory object we then
call the method submit_blast(). A given alignment job is given it’s unique “remote id”
(rid) and a collection of rids can be retrieved using the each_rid() method. Given a rid one
can call the method retrieve blast() to actually obtain the blast result, if ready. Try to
understand how this program works! See appendix A for the result when running program
and compare this to the result of bp_ex4.pl.

6.5.3 Bio::AlignIO

The Bio::AlignI0 is similar to the SeqI0 but it works on alignment files rather then se-
quences files as for the latter. An alignment file can be produced by e.g. the clustalw
program for multiple sequence alignments. Below is a very short converter between phylip
and clustalw formats. Compare this to the converter you wrote in chapter [f] NOTE: The
clustalw format that Bio: :AlignI0 produces is somewhat different from the one we looked
at in chapter o

bp ex7.plt

#! /usr/bin/perl -w

Program description #####i##

The shortest phylip to clustalw converter ever!!

#

Title: bp_ex7.pl

Author(s): Mattias Ohlsson
Description:

#

#

HUSHH R R

use strict;
use Bio::AlignIO;

my $in = Bio::AlignIO->new(-fh => *STDIN, -format => ’phylip’);
my $out = Bio::AlignI0->new(-fh => *STDOUT, -format => ’clustalw’);

$out—>write_aln($in->next_aln());

bp ex7.pl{

6.5.4 Bio::Tools::0ddCodes

This module can be used to produce an alternative alphabet coding for one protein sequence.
One can for instance turn an protein sequence, displayed in the usual 20-letter alphabet, into
a 2-letter hydrophobicity alphabet sequence. Here are more specific information about the
module:

Creating the 0ddCodes object, eg:

0w N O U s W N

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29

31
32
33
34
35

6.5. BIOPERL PROJECT (PART 2)

my $inputstream = Bio::SeqI0->new(’-file’ => "seqfile",
’—format’ => ’Fasta’);

my $seqobj = $inputstream->next_seq();

my $oddcode_obj = Bio::Tools::0ddcodes->new(-seq => $seqobj);

143

hydrophobic
Title : hydrophobic
Usage : $output = $oddcode_obj->hydrophobic();

Function: turns amino acid sequence into 2-letter hydrophobicity alphabet
: 0 (hydrophobic), I (hydrophilic)

Example : a sequence ACDEFGH will become OIIIOII

Returns : Reference to the new sequence string

Args : none

Here is an example that uses Bio: :Tools: :0ddcodes

bp_ex8.pl

#! /usr/bin/perl -w

Program description

An example of the 0OddCodes module

#

Title: bp_ex8.pl

Author(s): Mattias Ohlsson
Description:

#

#

L3 s s s s s s s s s s

use strict;
use Bio::8eql0;
use Bio::Tools::0ddCodes;

Read the file containing fasta sequences
my $in = Bio::SeqI0->new(-fh => *STDIN, -format => ’Fasta’);

Make a loop over all the sequences
while (my $seq = $in->next_seq()) {

Create a an 0ddCodes object
my $odd = Bio::Tools::0ddCodes->new(-seq => $seq);

Make a hydrophobic sequence
my $hseq_ref = $odd->hydrophobic();

Get the aa sequence
my $aaseq = $seq->seq();

Make a nice printout
my $Id = $seq->display_id();
print ">>>>ID: $Id\n";

my O@tmpl = ($aaseq =~ /(.{1,50}1)/g);

36
37
38
39
40
41
42
43

s W oo R

o

144 CHAPTER 6. THE CGI AND BIOPERL MODULES

my Otmp2 = (${$hseq_ref} =~ /(.{1,501)/g);

my $len = @tmpl;

for (my $i = 0; $i < $len; $i++) {
print "$tmpl[$il\n";
print "$tmp2[$il\n\n";

bp-ex8.pl

The result from running this program i.e. (>>/bp_ex8.pl < 1TEN.fasta)

>>>>ID: 1TEN:_
RLDAPSQIEVKDVIDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDL
OIOIIOOIOIOOIOOOOITIIOIIOIIIOIOOIOIOOOIOOITO00000I0I

TEDENQYSIGNLKPDTEYEVSLISRRGDMSSNPAKETFTT
00000000IOOIOINOO00IOIIOOOOO0IOO0IION0N0NIN0

6.5.5 Follow-up tasks [6+4

The perl programs used in this lecture are available as bp_ex4.pl bp_ex5.pl, bp_ex7.pl
and bp_ex8.pl. To run these programs you will also need: 1TEN blastp.res, 1TEN.fasta
and phylipl.align. In addition, for the follow-up tasks, you also need 1TEN_fasta.res

Complete the following tasks:

1. Make a parser for the 1TEN_fasta.res result file using the SearchlO module.

2. Use the Bio: :Tools: :SeqStats module to make a frequency table of all amino acids
in the 1TEN. fasta file.

6.6 Hand-in exercise 4
Select one of the following problems as the hand-in exercise for this week.

1. Parsing and simple analysis of large GenBank files. In this hand-in you will
work with a relatively large GenBank file. The task is to write a parser for a GenBank
file that can accomplish the following tasks:

1. Extract all entries in the GenBank file that belongs to the organism “Borrelia”
and save them in an external, FASTA formatted, file. Report the number of
entries found.

2. Report the number of unique organisms in the GenBank file.

6.6. HAND-IN EXERCISE 4 145

3. Report the average (nucleotide) sequence length.
4. Report the number of entries with at least one Coding sequence.

5. Show the protein sequence for the last translated protein found in the Genbank
file. Also, download, using the Bio: :DB: :GenBank module, this protein and dis-
play the downloaded sequence.

There are two Genbank files to choose from, 1db1.gb or 1db2.gb containing 5000 and
10000 entries respectively. The files are available from the course homepage. Sample
outputs can also be found there.

Hints: Most of the parsing can be accomplished using modules/methods from the
Bioperl project. Detailed information about the GenBank format can be found here
http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html.

2. Sequence statistics. In this hand-in you will use perl and perl modules to compute
some nucleotide sequence statistics. For the task you will use the complete sequence
of the “Dengue virus 4”. Your program should perform the following tasks:

1. Find the number of occurrences for the individual nucleotides (“A”, “G”, “T”,
“C”) in the sequence. Present as both numbers a percentages.

2. Count the number of occurrences of all DNA words of length 2. Present in a
decreasing order.

3. Some words are more frequent than others. Is this a simple consequence of the
fact the nucleotides occur with different frequencies? One can compare the num-
bers with the corresponding numbers one would get by permuting the sequence
(randomly) many times and count the occurrences of the different DNA words. If
the “real” number of some specific word significantly lies outside the distribution
of numbers obtained from the permuted sequences one would take this as a indi-
cation of non-random behavior. The task can be broken down into the following
steps:

a. permute the sequence.

b. count the number of all DNA words of length 2 (step 2 above) and store all
numbers.

c. repeat a-b “many” times (> 1000).

d. find significant differences between the distribution and the real number. You
can use the criteria of &+ four standard deviations.

e. present your findings.
The “Dengue virus 4”7 can be found in the file dengue_virus_4.gb, available from the
course homepage. A sample output can also be found there.

Hints: Bio::SeqI0, Math::Random and Statistics::Descriptive are useful mod-
ules for this exercise.

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

146 CHAPTER 6. THE CGI AND BIOPERL MODULES

