
HOWTO:Beginners
From BioPerl

Contents

1 Authors
2 Copyright
3 Abstract
4 Introduction
5 Installing Bioperl
6 Getting Assistance
7 Perl Itself
8 Writing a script
9 Creating a sequence, and an Object
10 Writing a sequence to a file
11 Retrieving a sequence from a file
12 Retrieving a sequence from a database
13 Retrieving multiple sequences from a database
14 The Sequence Object
15 Example Sequence Objects
16 Translating
17 Obtaining basic sequence statistics
18 BLAST
19 Indexing for Fast Retrieval
20 Searching for genes in genomic DNA
21 Code to query bibliographic databases
22 Using EMBOSS applications with Bioperl
23 More on Bioperl
24 Perl's Documentation System
25 The Basics of Perl Objects

25.1 A Simple Procedural Example
25.2 A Simple Object-Oriented Example
25.3 Terminology

Authors

Brian Osborne

briano at bioteam.net (mailto:briano@bioteam.net)

Copyright

This document is copyright Brian Osborne. It can be copied and distributed under the terms of the Perl
Artistic License (http://www.perl.com/pub/language/misc/Artistic.html) .

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

1 of 25 10/25/2013 08:46 AM

Abstract

This is a HOWTO that talks about using Bioperl, for biologists who would like to learn more about writing their
own bioinformatics scripts using Bioperl. What is Bioperl? It is an open source bioinformatics toolkit used by
researchers all over the world. If you're looking for a script built to fit your exact needs you probably won't find
it in Bioperl. What you will find is a diverse set of Perl modules that will enable you to write your own script,
and a community of people who are willing to help you.

Introduction

If you're a molecular biologist it's likely that you're interested in gene and protein sequences, and you study
them in some way on a regular basis. Perhaps you'd like to try your hand at automating some of these tasks,
or you're just curious about learning more about the programming side of bioinformatics. In this HOWTO
you'll see discussions of some of the common uses of Bioperl, like sequence analysis with BLAST and
retrieving sequences from public databases. You'll also see how to write Bioperl scripts that chain these tasks
together, that's how you'll be able to do really powerful things with Bioperl.

You will also see some discussions of software concepts; this can't be avoided. The more you understand
about programming the better but all efforts will be made to not introduce too much unfamiliar material.
However, there will be an introduction to modularity, or objects. This is one of the aspects of the Bioperl
package that you'll have to come to grips with as you attempt more complex tasks with your scripts.

One of the challenging aspects of learning a new skill is learning the jargon, and programming certainly has
its share of interesting terms and buzz phrases. Be patient - remember that the programmers learning
biology have had just as tough a task (if not worse - just ask them!).

Note: This HOWTO does not discuss a very nice module that's designed for beginners, Bio::Perl
(http://search.cpan.org/search?query=Bio::Perl&mode=all) . The reason is that though this is an excellent
introductory tool, it is not object-oriented and can't be extended. What we're attempting here is to introduce
the core of Bioperl and show you ways to expand your new-found skills.

Installing Bioperl

Start at Installing Bioperl. Many of the letters to the bioperl-l mailing list concern problems with installation,
and there is a set of concerns that come up repeatedly:

On Windows, messages like: "Error: Failed to download URL http://bioperl.org/DIST/GD.ppd", or "<some
module> Not found". The explanation is that Bioperl does not supply every accessory module that's
necessary to run all of Bioperl. You'll need to search other repositories to install all of these accessory
modules. See the Installing_Bioperl_on_Windows file for more information.

On Unix, messages like "Can't locate <some module>.pm in @INC...". This means that Perl could not find
a particular module and the explanation usually is that this module is not installed. See the
Installing_Bioperl_for_Unix file for details.

Seeing messages like "Tests Failed". If you see an error during installation consider whether this
problem is going to affect your use of Bioperl. There are roughly 1000 modules in Bioperl, and ten times
that many tests are run during the installation. If there's a complaint about GD it's only relevant if you
want to use the Bio::Graphics (http://search.cpan.org/search?query=Bio::Graphics&mode=all) modules,
if you see an error about some XML parser it's only going to affect you if you're reading XML files. Yes,
you could try and make each and every test pass, but that may be a lot of work, with much of it fixing
modules that aren't in BioPerl itself.

Getting Assistance

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

2 of 25 10/25/2013 08:46 AM

People will run into problems installing Bioperl or writing scripts using Bioperl, nothing unusual about that. If
you need assistance the way to get it is to mail bioperl-l@bioperl.org. There are a good number of helpful
people who regularly read this list but if you want their advice it's best to give sufficient detail.

Please include:

The version of Bioperl you're working with.
The platform or operating system you're using.
What you are trying to do.
The code that gives the error, if you're writing a script.
Any error messages you saw.

Every once in a while a message will appear in bioperl-l coming from someone in distress that goes
unanswered. The explanation is usually that the person neglected to include 1 or more of the details above,
usually the script or the error messages.

Perl Itself

Here are a few things you might want to look at if you want to learn more about Perl:

Learning Perl (http://www.oreilly.com/catalog/lperl2/) is the most frequently cited beginner's book.

Perl in a Nutshell (http://www.oreilly.com/catalog/perlnut2/) is also good. Not much in the way of
examples, but covers many topics succinctly.

Perl's own documentation. Do "perldoc perl" from the command-line for an introduction. Perldoc can
give you documentation of any module that is installed on your system: do "perldoc <modulename>" to
view documentation of <modulename>. Try for instance (assuming Bioperl has been installed):

>perldoc Bio::SeqIO

Writing a script

Sometimes the trickiest part is this step, writing something and getting it to run, so this section attempts to
address some of the more common tribulations.

In Unix when you're ready to work you're usually in the command-line or "shell" environment. First find out
Perl's version by typing this command:

 >perl -v

You will see something like:

 This is perl, v5.10.0 built for cygwin-thread-multi-64int

 Copyright 1987-2007, Larry Wall

 Perl may be copied only under the terms of either the Artistic License or the
 GNU General Public License, which may be found in the Perl 5 source kit.

 Complete documentation for Perl, including FAQ lists, should be found on
 this system using "man perl" or "perldoc perl". If you have access to the
 Internet, point your browser at http://www.perl.org/, the Perl Home Page.

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

3 of 25 10/25/2013 08:46 AM

Hopefully you're using Perl version 5.4 or higher, earlier versions may be troublesome. Now let's find out
where the Perl program is located:

 >which perl

This will give you something like:

 >/bin/perl

Now that we know where Perl is located we're ready to write a script, and line 1 of the script will specify this
location. You might be using some Unix word processor, emacs or vi, for example (nano or pico are other
possible choices, very easy to use, but not found on all Unix machines unfortunately). If you're on Windows
then Wordpad will work.

Start to write your script by entering something like:

 >emacs seqio.pl

And make this the first line of the script:

 #!/bin/perl

Creating a sequence, and an Object

Our first script will create a sequence. Well, not just a sequence, you will be creating a sequence object,
since Bioperl is written in an object-oriented way. Why be object-oriented? Why introduce these odd or
intrusive notions into software that should be biological or intuitive? The reason is that thinking in terms of
modules or objects turns out to be the most flexible, and ultimately the simplest, way to deal with data as
complex as biological data. Once you get over your initial skepticism, and have written a few scripts, you will
find this idea of an object becoming a bit more natural.

One way to think about an object in software is that it is a container for data. The typical sequence entry
contains different sorts of data (a sequence, one or more identifiers, and so on) so it will serve as a nice
example of what an object can be.

All objects in Bioperl are created by specific Bioperl modules, so if you want to create an object you're also
going to have to tell Perl which module to use. Let's add another line:

#!/bin/perl -w

use Bio::Seq;

This line tells Perl to use a module on your machine called "Bio/Seq.pm". We will use this Bio::Seq
(http://search.cpan.org/search?query=Bio::Seq&mode=all) module to create a Bio::Seq
(http://search.cpan.org/search?query=Bio::Seq&mode=all) object. The Bio::Seq (http://search.cpan.org
/search?query=Bio::Seq&mode=all) module is one of the central modules in Bioperl. The analogous Bio::Seq
(http://search.cpan.org/search?query=Bio::Seq&mode=all) object, or "Sequence object", or "Seq object", is
ubiquitous in Bioperl, it contains a single sequence and associated names, identifiers, and properties. Let's
create a very simple sequence object at first, like so:

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

4 of 25 10/25/2013 08:46 AM

#!/bin/perl -w

use Bio::Seq;

$seq_obj = Bio::Seq->new(-seq => "aaaatgggggggggggccccgtt",
 -alphabet => 'dna');

That's it! The variable $seq_obj is the Sequence object, a simple one, containing just a sequence. Note that
the code tells Bioperl that the sequence is DNA (the choices here are 'dna', 'rna', and 'protein'), this is the
wise thing to do. If you don't tell Bioperl it will attempt to guess the alphabet. Normally it guesses correctly but
if your sequence has lots of odd or ambiguous characters, such as N or X, Bioperl's guess may be incorrect
and this may lead to some problems.

Bio::Seq (http://search.cpan.org/search?query=Bio::Seq&mode=all) objects can be created manually, as
above, but they're also created automatically in many operations in Bioperl, for example when alignment files
or database entries or BLAST reports are parsed.

Any time you explicitly create an object, you will use this new() method. The syntax of this line is one you'll
see again and again in Bioperl: the name of the object or variable, the module name, the -> symbol, the
method name new, some argument name like -seq, the => symbol, and then the argument or value itself, like
aaaatgggggggggggccccgtt.

Note: If you've programmed before you've come across the term "function" or "sub-routine". In object-
oriented programming the term "method" is used instead.

The object was described as a data container, but it is more than that. It can also do work, meaning it can
use or call specific methods taken from the module or modules that were used to create it. For example, the
Bio::Seq module can access a method named seq() that will print out the sequence of Bio::Seq
(http://search.cpan.org/search?query=Bio::Seq&mode=all) objects. You could use it like this:

#!/bin/perl -w

use Bio::Seq;

$seq_obj = Bio::Seq->new(-seq => "aaaatgggggggggggccccgtt", -alphabet => 'dna');

print $seq_obj->seq;

As you'd expect, this script will print out aaaatgggggggggggccccgtt. That -> symbol is used when an object
calls or accesses its methods.

Let's make our example a bit more true-to-life, since a typical sequence object needs an identifier, perhaps a
description, in addition to its sequence.

#!/bin/perl -w

use Bio::Seq;

$seq_obj = Bio::Seq->new(-seq => "aaaatgggggggggggccccgtt",
 -display_id => "#12345",
 -desc => "example 1",
 -alphabet => "dna");

print $seq_obj->seq();

aaaatgggggggggggccccgtt, #12345, and example 1 are called "arguments" in programming jargon. You
could say that this example shows how to pass arguments to the new() method.

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

5 of 25 10/25/2013 08:46 AM

Writing a sequence to a file

This next example will show how two objects can work together to create a sequence file. We already have a
Sequence object, $seq_obj, and we will create an additional object whose responsibility it is to read from and
write to files. This object is the SeqIO object, where IO stands for Input-Output. By using Bio::SeqIO
(http://search.cpan.org/search?query=Bio::SeqIO&mode=all) in this manner you will be able to get input and
make output for all of the sequence file formats supported by Bioperl (the SeqIO HOWTO has a complete list
of supported formats). The way you create Bio::SeqIO (http://search.cpan.org/search?query=Bio::SeqIO&
mode=all) objects is very similar to the way we used new() to create a Bio::Seq (http://search.cpan.org
/search?query=Bio::Seq&mode=all) , or sequence, object:

use Bio::SeqIO;

$seqio_obj = Bio::SeqIO->new(-file => '>sequence.fasta', -format => 'fasta');

Note that > in the -file argument. This character indicates that we're going to write to the file named
"sequence.fasta", the same character we'd use if we were using Perl's open() function to write to a file. The
-format argument, "fasta", tells the Bio::SeqIO (http://search.cpan.org/search?query=Bio::SeqIO&mode=all)
object that it should create the file in fasta format.

Let's put our 2 examples together:

#!/bin/perl -w

use Bio::Seq;
use Bio::SeqIO;

$seq_obj = Bio::Seq->new(-seq => "aaaatgggggggggggccccgtt",
 -display_id => "#12345",
 -desc => "example 1",
 -alphabet => "dna");

$seqio_obj = Bio::SeqIO->new(-file => '>sequence.fasta', -format => 'fasta');

$seqio_obj->write_seq($seq_obj);

Let's consider that last write_seq line where you see two objects since this is where some neophytes start to
get a bit nervous. What's going on there? In that line we handed or passed the Sequence object to the
Bio::SeqIO (http://search.cpan.org/search?query=Bio::SeqIO&mode=all) object as an argument to its
write_seq method. Another way to think about this is that we hand the Sequence object to the Bio::SeqIO
(http://search.cpan.org/search?query=Bio::SeqIO&mode=all) object since Bio::SeqIO (http://search.cpan.org
/search?query=Bio::SeqIO&mode=all) understands how to take information from the Sequence object and
write to a file using that information, in this case in fasta format. If you run this script like this:

 >perl seqio.pl

You should create a file called "sequence.fasta" that looks like this:

 >#12345 example 1
 aaaatgggggggggggccccgtt

Let's demonstrate the intelligence of the SeqIO - the example below shows what file content is created when
the argument to "-format" is set to "genbank" instead of "fasta":

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

6 of 25 10/25/2013 08:46 AM

 LOCUS #12345 23 bp dna linear UNK
 DEFINITION example 1
 ACCESSION unknown
 FEATURES Location/Qualifiers
 BASE COUNT 4 a 4 c 12 g 3 t
 ORIGIN 1 aaaatggggg ggggggcccc gtt
 //

Retrieving a sequence from a file

One beginner's mistake is to not use Bio::SeqIO (http://search.cpan.org/search?query=Bio::SeqIO&
mode=all) when working with sequence files. This is understandable in some respects. You may have read
about Perl's open function, and Bioperl's way of retrieving sequences may look odd and overly complicated, at
first. But don't use open! Using open(), immediately forces you to do the parsing of the sequence file and this
can get complicated very quickly. Trust the Bio::SeqIO (http://search.cpan.org/search?query=Bio::SeqIO&
mode=all) object, it's built to open and parse all the common sequence formats, it can read and write to files,
and it's built to operate with all the other Bioperl modules that you will want to use.

Let's read the file we created previously, "sequence.fasta", using Bio::SeqIO (http://search.cpan.org
/search?query=Bio::SeqIO&mode=all) . The syntax will look familiar:

#!/bin/perl -w

use Bio::SeqIO;

$seqio_obj = Bio::SeqIO->new(-file => "sequence.fasta", -format => "fasta");

One difference is immediately apparent: there is no > character. Just as with with the open() function this
means we'll be reading from the "sequence.fasta" file. Let's add the key line, where we actually retrieve the
Sequence object from the file using the next_seq method:

#!/bin/perl -w

use Bio::SeqIO;

$seqio_obj = Bio::SeqIO->new(-file => "sequence.fasta", -format => "fasta");

$seq_obj = $seqio_obj->next_seq;

Here we've used the next_seq() method of the Bio::SeqIO (http://search.cpan.org/search?query=Bio::SeqIO&
mode=all) object. When you use, or call, next_seq() the Bio::SeqIO (http://search.cpan.org
/search?query=Bio::SeqIO&mode=all) object will get the next available sequence, in this case the first
sequence in the file that was just opened. The Sequence object that's created, $seq_obj, is functionally just
like the Sequence object we created manually in our first example. This is another idiom that's used
frequently in Bioperl, the next_<something> method. You'll come across the same idea in the next_aln
method of Bio::AlignIO (http://search.cpan.org/search?query=Bio::AlignIO&mode=all) (reading and writing
alignment files) and the next_hit method of Bio::SearchIO (http://search.cpan.org
/search?query=Bio::SearchIO&mode=all) (reading the output of sequence comparison programs such as
BLAST and HMMER).

If there were multiple sequences in the input file you could just continue to call next_seq() in some loop, and
SeqIO would retrieve the Seq objects, one by one, until none were left:

while ($seq_obj = $seqio_obj->next_seq){
 # print the sequence

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

7 of 25 10/25/2013 08:46 AM

 print $seq_obj->seq,"\n";
}

Do you have to supply a -format argument when you are reading from a file, as we did? Not necessarily, but
it's the safe thing to do. If you don't give a format then the SeqIO object will try to determine the format from
the file suffix or extension (and a list of the file extensions is in the SeqIO HOWTO). In fact, the suffix "fasta"
is one that SeqIO understands, so -format is unnecessary above. Without a known suffix SeqIO will attempt
to guess the format based on the file's contents but there's no guarantee that it can guess correctly for every
single format.

It may be useful to tell SeqIO the alphabet of the input, using the -alphabet argument. What this does is to tell
SeqIO not to try to determine the alphabet ("dna", "rna", "protein"). This helps because Bioperl may guess
incorrectly (for example, Bioperl is going to guess that the protein sequence MGGGGTCAATT is DNA).
There may also be odd characters present in the sequence that SeqIO objects to (e.g. "-~?"). Set -alphabet to
a value when reading sequences and SeqIO will not attempt to guess the alphabet of those sequences or
validate the sequences.

Retrieving a sequence from a database

One of the strengths of Bioperl is that it allows you to retrieve sequences from all sorts of sources, files,
remote databases, local databases, regardless of their format. Let's use this capability to get a entry from
Genbank (Bio::DB::GenBank (http://search.cpan.org/search?query=Bio::DB::GenBank&mode=all)). What
will we retrieve? Again, a Sequence object. Let's choose our module:

use Bio::DB::GenBank;

We could also query SwissProt (Bio::DB::SwissProt (http://search.cpan.org
/search?query=Bio::DB::SwissProt&mode=all)), GenPept (Bio::DB::GenPept (http://search.cpan.org
/search?query=Bio::DB::GenPept&mode=all)), EMBL (Bio::DB::EMBL (http://search.cpan.org
/search?query=Bio::DB::EMBL&mode=all)), SeqHound (Bio::DB::SeqHound (http://search.cpan.org
/search?query=Bio::DB::SeqHound&mode=all)), Entrez Gene (Bio::DB::EntrezGene (http://search.cpan.org
/search?query=Bio::DB::EntrezGene&mode=all)), or RefSeq (Bio::DB::RefSeq (http://search.cpan.org
/search?query=Bio::DB::RefSeq&mode=all)) in an analogous fashion (e.g "use Bio::DB::SwissProt"). Now
we'll create the object:

use Bio::DB::GenBank;

$db_obj = Bio::DB::GenBank->new;

In this case we've created a "database object" using the new method, but without any arguments. Let's ask
the object to do something useful:

use Bio::DB::GenBank;

$db_obj = Bio::DB::GenBank->new;

$seq_obj = $db_obj->get_Seq_by_id(2);

The argument passed to the get_Seq_by_id method is an identifier, 2, a Genbank GI number. You could also
use the get_Seq_by_acc method with an accession number (e.g. A12345) or get_Seq_by_version using a
versioned accession number (e.g. A12345.2). Make sure to use the proper identifier for the method you use,
the methods are not interchangeable.

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

8 of 25 10/25/2013 08:46 AM

Different Bioperl classes can query remote databases for single or multiple records. These should not be
used in loops to retrieve large numbers of record; NCBI will block your IP if they feel you are abusing their
services. There are much better/faster ways to do this: download a GenBank section and parse it directly, or
use a BLAST-formatted database and fastacmd to get the seqs of interest in FASTA format.

Retrieving multiple sequences from a database

There are more sophisticated ways to query Genbank than this. This next example attempts to do something
"biological", using the module Bio::DB::Query::GenBank (http://search.cpan.org
/search?query=Bio::DB::Query::GenBank&mode=all) . Want all Arabidopsis topoisomerases from Genbank
Nucleotide? This would be a reasonable first attempt:

use Bio::DB::Query::GenBank;

$query = "Arabidopsis[ORGN] AND topoisomerase[TITL] and 0:3000[SLEN]";
$query_obj = Bio::DB::Query::GenBank->new(-db => 'nucleotide', -query => $query);

Note: This capability to query by string and field is only available for GenBank as of Bioperl version 1.5,
queries to other databases, like Swissprot or EMBL, are limited to identifiers and accessions.

Here's another query example, this one will retrieve all Trypanosoma brucei ESTs:

$query_obj = Bio::DB::Query::GenBank->new(
 -query =>'gbdiv est[prop] AND Trypanosoma brucei [organism]',
 -db => 'nucleotide');

You can find detailed information on Genbank's query fields here (http://www.ncbi.nlm.nih.gov/entrez/query
/static/help/Summary_Matrices.html#Search_Fields_and_Qualifiers) .

That is how we would construct a query object, but we haven't retrieved sequences yet. To do so we will have
to create a database object, some object that can get Sequence objects for us, just as we did in the first
Genbank example:

use Bio::DB::GenBank;
use Bio::DB::Query::GenBank;

$query = "Arabidopsis[ORGN] AND topoisomerase[TITL] and 0:3000[SLEN]";
$query_obj = Bio::DB::Query::GenBank->new(-db => 'nucleotide', -query => $query);

$gb_obj = Bio::DB::GenBank->new;

$stream_obj = $gb_obj->get_Stream_by_query($query_obj);

while ($seq_obj = $stream_obj->next_seq) {
 # do something with the sequence object
 print $seq_obj->display_id, "\t", $seq_obj->length, "\n";
}

That $stream_obj and its get_Stream_by_query method may not look familiar. The idea is that you will use a
stream whenever you expect to retrieve a stream or series of sequence objects. Much like get_Seq_by_id, but
built to retrieve one or more objects, not just one object.

Notice how carefully separated the responsibilities of each object are in the code above: there's an object just
to hold the query, an object to execute the query using this query object, an object to do the I/O, and finally
the sequence object.

Warning. Be careful what you ask for, many of today's nucleotide database entries are genome-size and you

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

9 of 25 10/25/2013 08:46 AM

will probably run out of memory if your query happens to match one of these monstrosities. You can use the
SLEN field to limit the size of the sequences you retrieve.

The Sequence Object

There's been a lot of discussion around the Sequence object, and this object has been created in a few
different ways, but we haven't shown what it's capable of doing. The table below lists the methods available
to you if you have a Sequence object in hand. "Returns" means what the object will give you when you ask it
for data. Some methods, such as seq(), can be used to get or set values. You're setting when you assign a
value, you're getting when you ask the object what values it has. For example, to get or retrieve a value

$sequence_as_string = $seq_obj->seq;

To set or assign a value:

$seq_obj->seq("MMTYDFFFFVVNNNNPPPPAAAW");

Table 1: Sequence Object Methods

Name Returns Example Note

accession_number identifier $acc = $so->accession_number get or set an identifier

alphabet alphabet $so->alphabet('dna')
get or set the alphabet
('dna','rna','protein')

authority
authority, if
available

$so->authority("FlyBase") get or set the organization

desc description $so->desc("Example 1") get or set a description

display_id identifier $so->display_id("NP_123456") get or set an identifier

division
division, if
available
(e.g. PRI)

$div = $so->division get division (e.g. "PRI")

get_dates
array of
dates, if
available

@dates = $so->get_dates get dates

get_secondary_accessions

array of
secondary
accessions,
if available

@accs =
$so->get_secondary_accessions

get other identifiers

is_circular Boolean if $so->is_circular { # } get or set

keywords
keywords, if
available

@array = $so->keywords get or set keywords

length
length, a
number

$len = $so->length get the length

molecule
molecule
type, if
available

$type = $so->molecule
get molecule (e.g. "RNA",
"DNA")

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

10 of 25 10/25/2013 08:46 AM

namespace
namespace,
if available

$so->namespace("Private") get or set the name space

new
Sequence
object

$so = Bio::Seq->new(-seq =>
"MPQRAS")

create a new one, see
Bio::Seq
(http://search.cpan.org
/search?query=Bio::Seq&
mode=all) for more

pid
pid, if
available

$pid = $so->pid get pid

primary_id identifier $so->primary_id(12345) get or set an identifier

revcom
Sequence
object

$so2 = $so1->revcom Reverse complement

seq
sequence
string

$seq = $so->seq get or set the sequence

seq_version
version, if
available

$so->seq_version("1") get or set a version

species
Species
object

$species_obj = $so->species

See Bio::Species
(http://search.cpan.org
/search?query=Bio::Species&
mode=all) for more

subseq
sequence
string

$string =
$seq_obj->subseq(10,40)

Arguments are start and end

translate
protein
Sequence
object

$prot_obj = $dna_obj->translate

trunc
Sequence
object

$so2 = $so1->trunc(10,40) Arguments are start and end

The table above shows the methods you're likely to use that concern the Sequence object directly. Bear in
mind that not all values, such as molecule or division, are found in all sequence formats, you have to know
something about your input sequences in order to get some of these values.

There are also a number of methods that are concerned with the Features and Annotations associated with
the Sequence object. This is something of a tangent but if you'd like to learn more see the Feature-
Annotation HOWTO. The methods related to this topic are shown below.

Table 2: Feature and Annotation Methods

Name Returns Note

get_SeqFeatures array of SeqFeature objects

get_all_SeqFeatures array of SeqFeature objects array includes sub-features

remove_SeqFeatures array of SeqFeatures removed

feature_count number of SeqFeature objects

add_SeqFeature annotation array of Annotation objects get or set

Example Sequence Objects

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

11 of 25 10/25/2013 08:46 AM

Let's use some of the methods above and see what they return when the sequence object is obtained from
different sources. In the Genbank example we're assuming we've used Genbank to retrieve or create a
Sequence object. So this object could have have been retrieved like this:

use Bio::DB::GenBank;

$db_obj = Bio::DB::GenBank->new;
$seq_obj = $db_obj->get_Seq_by_acc("J01673");

Or it could have been created from a file like this:

use Bio::SeqIO;

$seqio_obj = Bio::SeqIO->new(-file => "J01673.gb", -format => "genbank");
$seq_obj = $seqio_obj->next_seq;

What the Genbank file looks like:

LOCUS ECORHO 1880 bp DNA linear BCT 26-APR-1993
DEFINITION E.coli rho gene coding for transcription termination factor.
ACCESSION J01673 J01674
VERSION J01673.1 GI:147605
KEYWORDS attenuator; leader peptide; rho gene; transcription terminator.
SOURCE Escherichia coli
ORGANISM Escherichia coli
 Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
 Enterobacteriaceae; Escherichia.
REFERENCE 1 (bases 1 to 1880)
AUTHORS Brown,S., Albrechtsen,B., Pedersen,S. and Klemm,P.
TITLE Localization and regulation of the structural gene for
 transcription-termination factor rho of Escherichia coli
JOURNAL J. Mol. Biol. 162 (2), 283-298 (1982)
MEDLINE 83138788
PUBMED 6219230
REFERENCE 2 (bases 1 to 1880) AUTHORS Pinkham,J.L. and Platt,T.
TITLE The nucleotide sequence of the rho gene of E. coli K-12
JOURNAL Nucleic Acids Res. 11 (11), 3531-3545 (1983)
MEDLINE 83220759
PUBMED 6304634
COMMENT Original source text: Escherichia coli (strain K-12) DNA.
 A clean copy of the sequence for [2] was kindly provided by
 J.L.Pinkham and T.Platt.
FEATURES Location/Qualifiers
 source 1..1880
 /organism="Escherichia coli"
 /mol_type="genomic DNA"
 /strain="K-12"
 /db_xref="taxon:562"
 mRNA 212..>1880
 /product="rho mRNA"
 CDS 282..383
 /note="rho operon leader peptide"
 /codon_start=1
 /transl_table=11
 /protein_id="AAA24531.1"
 /db_xref="GI:147606"
 /translation="MRSEQISGSSLNPSCRFSSAYSPVTRQRKDMSR"
 gene 468..1727
 /gene="rho"
 CDS 468..1727
 /gene="rho"
 /note="transcription termination factor"
 /codon_start=1
 /transl_table=11
 /protein_id="AAA24532.1"
 /db_xref="GI:147607"
 /translation="MNLTELKNTPVSELITLGENMGLENLARMRKQDIIFAILKQHAK
 SGEDIFGDGVLEILQDGFGFLRSADSSYLAGPDDIYVSPSQIRRFNLRTGDTISGKIR

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

12 of 25 10/25/2013 08:46 AM

 PPKEGERYFALLKVNEVNFDKPENARNKILFENLTPLHANSRLRMERGNGSTEDLTAR
 VLDLASPIGRGQRGLIVAPPKAGKTMLLQNIAQSIAYNHPDCVLMVLLIDERPEEVTE
 MQRLVKGEVVASTFDEPASRHVQVAEMVIEKAKRLVEHKKDVIILLDSITRLARAYNT
 VVPASGKVLTGGVDANALHRPKRFFGAARNVEEGGSLTIIATALIDTGSKMDEVIYEE
 FKGTGNMELHLSRKIAEKRVFPAIDYNRSGTRKEELLTTQEELQKMWILRKIIHPMGE
 IDAMEFLINKLAMTKTNDDFFEMMKRS"
ORIGIN 15 bp upstream from HhaI site.
 1 aaccctagca ctgcgccgaa atatggcatc cgtggtatcc cgactctgct gctgttcaaa
 61 aacggtgaag tggcggcaac caaagtgggt gcactgtcta aaggtcagtt gaaagagttc

 ...deleted...

 1801 tgggcatgtt aggaaaattc ctggaatttg ctggcatgtt atgcaatttg catatcaaat
 1861 ggttaatttt tgcacaggac
//

Either way, the values returned by various methods are shown below.

Table 3: Values from the Sequence object (Genbank)

Method Returns

display_id ECORHO

desc E.coli rho gene coding for transcription termination factor.

display_name ECORHO

accession J01673

primary_id 147605

seq_version 1

keywords attenuator; leader peptide; rho gene; transcription terminator

is_circular

namespace

authority

length 1880

seq AACCCT...ACAGGAC

division BCT

molecule DNA

get_dates 26-APR-1993

get_secondary_accessions J01674

There's a few comments that need to be made. First, you noticed that there's an awful lot of information
missing. All of this missing information is stored in what Bioperl calls Features and Annotations, see the
Feature and Annotation HOWTO if you'd like to learn more about this. Second, a few of the methods don't
return anything, like namespace and authority. The reason is that though these are good values in principle
there are no commonly agreed upon standard names - perhaps someday the authors will be able to rewrite
the code when all our public databases agree what these values should be. Finally, you may be wondering
why the method names are what they are and why particular fields or identifiers end up associated with
particular methods. Again, without having standard names for things that are agreed upon by the creators of
our public databases all the authors could do is use common sense, and these choices seem to be
reasonable ones.

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

13 of 25 10/25/2013 08:46 AM

Next let's take a look at the values returned by the methods used by the Sequence object when a fasta file is
used as input. The fasta file entry looks like this, clearly much simpler than the corresponding Genbank entry:

>gi|147605|gb|J01673.1|ECORHO E.coli rho gene coding for transcription termination factor
AACCCTAGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACTCTGCTGCTGTTCAAAAACGGTGAAG
TGGCGGCAACCAAAGTGGGTGCACTGTCTAAAGGTCAGTTGAAAGAGTTCCTCGACGCTAACCTGGCGTA

 ...deleted...

ACGTGTTTACGTGGCGTTTTGCTTTTATATCTGTAATCTTAATGCCGCGCTGGGCATGTTAGGAAAATTC
CTGGAATTTGCTGGCATGTTATGCAATTTGCATATCAAATGGTTAATTTTTGCACAGGAC

And here are the values:

Table 4: Values from the Sequence object (Fasta)

Method Returns

display_id 147605|gb|J01673.1|ECORHO

desc E.coli rho gene coding for transcription termination factor

display_name 147605|gb|J01673.1|ECORHO

accession unknown

primary_id 147605|gb|J01673.1|ECORHO

is_circular

namespace

authority

length 1880

seq AACCCT...ACAGGAC

If you compare these values to the values taken from the Genbank entry you'll see that certain values are
missing, like seq_version. That's because values like these aren't usually present in a fasta file.

Another natural question is why the values returned by methods like display_id are different even though the
only thing distinguishing these entries are their respective formats. The reason is that there are no rules
governing how one interconverts formats, meaning how Genbank creates fasta files from Genbank files may
be different from how SwissProt performs the same interconversion. Until the organizations creating these
databases agree on standard sets of names and formats all the Bioperl authors can do is do make
reasonable choices.

Yes, Bioperl could follow the conventions of a single organization like Genbank such that display_id returns
the same value when using Genbank format or Genbank's fasta format but the authors have elected not to
base Bioperl around the conventions of any one organization.

Let's use a Swissprot file as our last example. The input entry looks like this:

ID A2S3_RAT STANDARD; PRT; 913 AA.
AC Q8R2H7; Q8R2H6; Q8R4G3;
DT 28-FEB-2003 (Rel. 41, Created)
DE Amyotrophic lateral sclerosis 2 chromosomal region candidate gene
DE protein 3 homolog (GABA-A receptor interacting factor-1) (GRIF-1) (O-
DE GlcNAc transferase-interacting protein of 98 kDa).
GN ALS2CR3 OR GRIF1 OR OIP98.

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

14 of 25 10/25/2013 08:46 AM

OS Rattus norvegicus (Rat).
OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
OC Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Rattus.
OX NCBI_TaxID=10116;
RN [1]
RP SEQUENCE FROM N.A. (ISOFORMS 1 AND 2), SUBCELLULAR LOCATION, AND
RP INTERACTION WITH GABA-A RECEPTOR.
RC TISSUE=Brain;
RX MEDLINE=22162448; PubMed=12034717;
RA Beck M., Brickley K., Wilkinson H.L., Sharma S., Smith M.,
RA Chazot P.L., Pollard S., Stephenson F.A.;
RT "Identification, molecular cloning, and characterization of a novel
RT GABAA receptor-associated protein, GRIF-1.";
RL J. Biol. Chem. 277:30079-30090(2002).
RN [2]
RP REVISIONS TO 579 AND 595-596, AND VARIANTS VAL-609 AND PRO-820.
RA Stephenson F.A.;
RL Submitted (FEB-2003) to the EMBL/GenBank/DDBJ databases.
RN [3]
RP SEQUENCE FROM N.A. (ISOFORM 3), INTERACTION WITH O-GLCNAC TRANSFERASE,
RP AND O-GLYCOSYLATION.
RC STRAIN=Sprague-Dawley; TISSUE=Brain;
RX MEDLINE=22464403; PubMed=12435728;
RA Iyer S.P.N., Akimoto Y., Hart G.W.;
RT "Identification and cloning of a novel family of coiled-coil domain
RT proteins that interact with O-GlcNAc transferase.";
RL J. Biol. Chem. 278:5399-5409(2003).
CC -!- SUBUNIT: Interacts with GABA-A receptor and O-GlcNac transferase.
CC -!- SUBCELLULAR LOCATION: Cytoplasmic.
CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative splicing; Named isoforms=3;
CC Name=1; Synonyms=GRIF-1a;
CC IsoId=Q8R2H7-1; Sequence=Displayed;
CC Name=2; Synonyms=GRIF-1b;
CC IsoId=Q8R2H7-2; Sequence=VSP_003786, VSP_003787;
CC Name=3;
CC IsoId=Q8R2H7-3; Sequence=VSP_003788;
CC -!- PTM: O-glycosylated.
CC -!- SIMILARITY: TO HUMAN OIP106.
DR EMBL; AJ288898; CAC81785.2; -.
DR EMBL; AJ288898; CAC81786.2; -.
DR EMBL; AF474163; AAL84588.1; -.
DR GO; GO:0005737; C:cytoplasm; IEP.
DR GO; GO:0005634; C:nucleus; IDA.
DR GO; GO:0005886; C:plasma membrane; IEP.
DR GO; GO:0006357; P:regulation of transcription from Pol II pro...; IDA.
DR InterPro; IPR006933; HAP1_N.
DR Pfam; PF04849; HAP1_N; 1.
KW Coiled coil; Alternative splicing; Polymorphism.
FT DOMAIN 134 355 COILED COIL (POTENTIAL).
FT VARSPLIC 653 672 VATSNPGKCLSFTNSTFTFT -> ALVSHHCPVEAVRAVHP
FT TRL (in isoform 2).
FT /FTId=VSP_003786.
FT VARSPLIC 673 913 Missing (in isoform 2).
FT /FTId=VSP_003787.
FT VARSPLIC 620 687 VQQPLQLEQKPAPPPPVTGIFLPPMTSAGGPVSVATSNPGK
FT CLSFTNSTFTFTTCRILHPSDITQVTP -> GSAASSTGAE
FT ACTTPASNGYLPAAHDLSRGTSL (in isoform 3).
FT /FTId=VSP_003788.
FT VARIANT 609 609 E -> V.
FT VARIANT 820 820 S -> P.
SQ SEQUENCE 913 AA; 101638 MW; D0E135DBEC30C28C CRC64;
 MSLSQNAIFK SQTGEENLMS SNHRDSESIT DVCSNEDLPE VELVNLLEEQ LPQYKLRVDS
 LFLYENQDWS QSSHQQQDAS ETLSPVLAEE TFRYMILGTD RVEQMTKTYN DIDMVTHLLA
 ...deleted...
 GIARVVKTPV PRENGKSREA EMGLQKPDSA VYLNSGGSLL GGLRRNQSLP VMMGSFGAPV
 CTTSPKMGIL KED
//

The corresponding set of values is shown below.

Table 5: Values from the Sequence object (Swissprot)

Method Returns

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

15 of 25 10/25/2013 08:46 AM

display_id A2S3_RAT

desc Amyotrophic lateral ... protein of 98 kDa).

display_name A2S3_RAT

accession Q8R2H7

is_circular

namespace

authority

seq_version

keywords Coiled coil; Alternative splicing; Polymorphism

length 913

seq MSLSQ...ILKED

division RAT

get_dates 28-FEB-2003 (Rel. 41, Created)

get_secondary_accessions Q8R2H6 Q8R4G3

As in the Genbank example there's information that the Sequence object doesn't supply, and it's all stored in
Annotation objects. See the Feature and Annotation HOWTO for more.

Translating

Translation in bioinformatics can mean slightly different things, either translating a nucleotide sequence from
start to end or translate the actual coding regions in mRNAs or cDNAs. The Bioperl implementation of
sequence translation does both of these.

Any sequence object with alphabet 'dna' or 'rna' can be translated by simply using translate which returns a
protein sequence object:

$prot_obj = $my_seq_object->translate;

All codons will be translated, including those before and after any initiation and termination codons. For
example, ttttttatgccctaggggg will be translated to FFMP*G

However, the translate() method can also be passed several optional parameters to modify its behavior. For
example, you can tell translate() to modify the characters used to represent terminator (default is *) and
unknown amino acids (default is X).

$prot_obj = $my_seq_object->translate(-terminator => '-');
$prot_obj = $my_seq_object->translate(-unknown => '_');

You can also determine the frame of the translation. The default frame starts at the first nucleotide (frame 0).
To get translation in the next frame we would write:

$prot_obj = $my_seq_object->translate(-frame => 1);

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

16 of 25 10/25/2013 08:46 AM

If we want to translate full coding regions (CDS) the way major nucleotide databanks EMBL, GenBank and
DDBJ do it, the translate() method has to perform more checks. Specifically, translate() needs to confirm
that the open reading frame has appropriate start and terminator codons at the very beginning and the very
end of the sequence and that there are no terminator codons present within the sequence in frame 0. In
addition, if the genetic code being used has an atypical (non-ATG) start codon, the translate() method needs
to convert the initial amino acid to methionine. These checks and conversions are triggered by setting
"complete" to 1:

$prot_obj = $my_seq_object->translate(-complete => 1);

If "complete" is set to true and the criteria for a proper CDS are not met, the method, by default, issues a
warning. By setting "throw" to 1, one can instead instruct the program to die if an improper CDS is found, e.g.

$prot_obj = $my_seq_object->translate(-complete => 1,
 -throw => 1);

The codontable_id argument to translate() makes it possible to use alternative genetic codes. There are
currently 16 codon tables defined, including 'Standard', 'Vertebrate Mitochondrial', 'Bacterial', 'Alternative
Yeast Nuclear' and 'Ciliate, Dasycladacean and Hexamita Nuclear'. All these tables can be seen in
Bio::Tools::CodonTable (http://search.cpan.org/search?query=Bio::Tools::CodonTable&mode=all) . For
example, for mitochondrial translation:

$prot_obj = $seq_obj->translate(-codontable_id => 2);

You can also create a custom codon table and pass this to translate, the code will look something like this:

use Bio::Tools::CodonTable;

@custom_table =
 ('test1',
 'FFLLSSSSYY**CC*WLLLL**PPHHQQR*RRIIIFT*TT*NKKSSRRV*VVAA*ADDEE*GGG'
);

$codon_table = Bio::Tools::CodonTable->new;

$id = $codon_table->add_table(@custom_table);

$prot_obj = $my_seq_object->translate(-codontable_id => $id);

See Bio::Tools::CodonTable (http://search.cpan.org/search?query=Bio::Tools::CodonTable&mode=all) for
information on the format of a codon table.

translate() can also find the open reading frame (ORF) starting at the 1st initiation codon in the nucleotide
sequence, regardless of its frame, and translate that:

$prot_obj = $my_seq_object->translate(-orf => 1);

Most of the codon tables, including the default codon table NCBI "Standard", have initiation codons in
addition to ATG. To tell translate() to use only ATG or atg as the initiation codon set -start to "atg":

$prot_obj = $my_seq_object->translate(-orf => 1,
 -start => "atg");

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

17 of 25 10/25/2013 08:46 AM

The -start argument only applies when -orf is set to 1.

Last trick. By default translate() will translate the termination codon to some special character (the default is
*, but this can be reset using the -terminator argument).

When -complete is set to 1 this character is removed. So, with this:

$prot_obj = $my_seq_object->translate(-orf => 1,
 -complete => 1);

the sequence tttttatgccctaggggg will be translated to MP, not MP*.

See Bio::Tools::CodonTable (http://search.cpan.org/search?query=Bio::Tools::CodonTable&mode=all) and
Bio::PrimarySeqI (http://search.cpan.org/search?query=Bio::PrimarySeqI&mode=all) for more information on
translation.

Obtaining basic sequence statistics

In addition to the methods directly available in the Seq object, Bioperl provides various helper objects to
determine additional information about a sequence. For example, Bio::Tools::SeqStats
(http://search.cpan.org/search?query=Bio::Tools::SeqStats&mode=all) object provides methods for obtaining
the molecular weight of the sequence as well the number of occurrences of each of the component residues
(bases for a nucleic acid or amino acids for a protein.) For nucleic acids, Bio::Tools::SeqStats
(http://search.cpan.org/search?query=Bio::Tools::SeqStats&mode=all) also returns counts of the number of
codons used. For example:

use Bio::Tools::SeqStats;
$seq_stats = Bio::Tools::SeqStats->new($seqobj);
$weight = $seq_stats->get_mol_wt();
$monomer_ref = $seq_stats->count_monomers();
$codon_ref = $seq_stats->count_codons(); # for nucleic acid sequence

Note: sometimes sequences will contain ambiguous codes. For this reason, get_mol_wt() returns a reference
to a two element array containing a greatest lower bound and a least upper bound of the molecular weight.

The SeqWords object is similar to SeqStats and provides methods for calculating frequencies of "words" (e.g.
tetramers or hexamers) within the sequence. See Bio::Tools::SeqStats (http://search.cpan.org
/search?query=Bio::Tools::SeqStats&mode=all) and Bio::Tools::SeqWords (http://search.cpan.org
/search?query=Bio::Tools::SeqWords&mode=all) for more information.

BLAST

This section is outdated, please see HOWTO:BlastPlus. BLAST is no longer supported by NCBI, it has been
superceded by BLAST+.

You have access to a large number of sequence analysis programs within Bioperl. Typically this means you
have a means to run the program and frequently a means of parsing the resulting output, or report, as well.
Certainly the most popular analytical program is BLAST so let's use it as an example. First you'll need to get
BLAST (http://www.ncbi.nlm.nih.gov/blast/) , also known as blastall, installed on your machine and running,
versions of the program that can run on all the popular operating systems can be downloaded
(http://www.ncbi.nlm.nih.gov/blast/download.shtml) from NCBI. The example code assumes that you used
the formatdb program to index the database sequence file "db.fa".

As usual, we start by choosing a module to use, in this case Bio::Tools::Run::StandAloneBlast

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

18 of 25 10/25/2013 08:46 AM

(http://search.cpan.org/search?query=Bio::Tools::Run::StandAloneBlast&mode=all) . You stipulate some
blastall parameters used by the blastall program by using new(). As you'd expect, we want to create a Blast
object, and we will pass a Sequence object to the Blast object, this Sequence object will be used as the
query:

use Bio::Seq;
use Bio::Tools::Run::StandAloneBlast;

$blast_obj = Bio::Tools::Run::StandAloneBlast->new(-program => 'blastn', -database => 'db.fa');

$seq_obj = Bio::Seq->new(-id =>"test query", -seq =>"TTTAAATATATTTTGAAGTATAGATTATATGTT");

$report_obj = $blast_obj->blastall($seq_obj);

$result_obj = $report_obj->next_result;

print $result_obj->num_hits;

By calling the blastall method you're actually running BLAST, creating the report file, and parsing the report
file's contents. All the data in the report ends up in the report object, and you can access or print out the data
in all sorts of ways. The report object, $report_obj, and the result object, $result_obj, come from the SearchIO
modules. The SearchIO HOWTO will tell you all about using these objects to extract useful data from your
BLAST analyses.

Here's an example of how one would use SearchIO to extract data from a BLAST report:

use Bio::SearchIO;
$report_obj = new Bio::SearchIO(-format => 'blast',
 -file => 'report.bls');
while($result = $report_obj->next_result) {
 while($hit = $result->next_hit) {
 while($hsp = $hit->next_hsp) {
 if ($hsp->percent_identity > 75) {
 print "Hit\t", $hit->name, "\n", "Length\t", $hsp->length('total'),
 "\n", "Percent_id\t", $hsp->percent_identity, "\n";
 }
 }
 }
}

This code prints out details about the match when the HSP or aligned pair are greater than 75% identical.

Sometimes you'll see errors when you try to use Bio::Tools::Run::StandAloneBlast (http://search.cpan.org
/search?query=Bio::Tools::Run::StandAloneBlast&mode=all) that have nothing to do with Bioperl. Make sure
that BLAST is set up properly and running before you attempt to script it using
Bio::Tools::Run::StandAloneBlast (http://search.cpan.org/search?query=Bio::Tools::Run::StandAloneBlast&
mode=all) . There are some notes on setting up BLAST in the INSTALL (http://bioperl.open-bio.org
/SRC/bioperl-live/INSTALL) file.

Bioperl enables you to run a wide variety of bioinformatics programs but in order to do so, in most cases, you
will need to install the accessory bioperl-run package. In addition there is no guarantee that there is a
corresponding parser for the program that you wish to run, but parsers have been built for the most popular
programs. You can find the bioperl-run package on the download page.

Indexing for Fast Retrieval

One of the under-appreciated features of Bioperl is its ability to index sequence files. The idea is that you
would create some sequence file locally and create an index file for it that enables you to retrieve sequences
from the sequence file. Why would you want to do this? Speed, for one. Retrieving sequences from local,

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

19 of 25 10/25/2013 08:46 AM

indexed sequence files is much faster than using the Bio::DB::GenBank (http://search.cpan.org
/search?query=Bio::DB::GenBank&mode=all) module used above that retrieves from a remote database. It's
also much faster than using SeqIO, in part because SeqIO is stepping through a file, one sequence at a time,
starting at the beginning of the file. Flexibility is another reason. What if you'd created your own collection of
sequences, not found in a public database? By indexing this collection you'll get fast access to your
sequences.

There's only one requirement here, the term or id that you use to retrieve the sequence object must be
unique in the index, these indices are not built to retrieve multiple sequence objects from one query.

There are a few different modules in Bioperl that can index sequence files, the Bio::Index::* modules and
Bio::DB::Fasta (http://search.cpan.org/search?query=Bio::DB::Fasta&mode=all) . All these modules are
scripted in a similar way: you first index one or more files, then retrieve sequences from the indices. Let's
begin our script with the use statement and also set up our environment with some variables (the sequence
file, FASTA sequence format, will be called "sequence.fa"):

use Bio::Index::Fasta;
$ENV{BIOPERL_INDEX_TYPE} = "SDBM_File";

The lines above show that you can set environmental variables from within Perl and they are stored in Perl's
own %ENV hash. This is essentially the same thing as the following in tcsh or csh:

 >setenv BIOPERL_INDEX_TYPE SDBM_File

Or the following in the bash shell:

 >export BIOPERL_INDEX_TYPE=SDBM_File

The BIOPERL_INDEX_TYPE variable refers to the indexing scheme, and SDBM_File is the scheme that
comes with Perl. BIOPERL_INDEX stipulates the location of the index file, and this way you could have more
than one index file per sequence file if you wanted, by designating multiple locations (and the utility of more
than 1 index will become apparent).

Now let's construct the index:

$ENV{BIOPERL_INDEX_TYPE} = "SDBM_File";
use Bio::Index::Fasta;

$file_name = "sequence.fa";
$id = "48882";
$inx = Bio::Index::Fasta->new (-filename => $file_name . ".idx", -write_flag => 1);
$inx->make_index($file_name);

You would execute this script in the directory containing the "sequence.fa" file, and it would create an index
file called "sequence.fa.idx". Then you would retrieve a sequence object like this:

$seq_obj = $inx->fetch($id)

By default the fasta indexing code will use the string following the > character as a key, meaning that fasta
header line should look something like this if you want to fetch using the value "48882":

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

20 of 25 10/25/2013 08:46 AM

 >48882 pdb|1CRA

However, what if you wanted to retrieve using some other key, like "1CRA" in the example above? You can
customize the index by using Bio::Index::Fasta (http://search.cpan.org/search?query=Bio::Index::Fasta&
mode=all) 's id_parser method, which accepts the name of a function as an argument where that function
tells the indexing object what key to use. For example:

$inx->id_parser(\&get_id);
$inx->make_index($file_name);

sub get_id {
 $header = shift;
 $header =~ /pdb\|(\S+)/;
 $1;
}

To be precise, one would say that the id_parser method accepts a reference to a function as an argument.

Bio::DB::Fasta (http://search.cpan.org/search?query=Bio::DB::Fasta&mode=all) has some features that
Bio::Index::Fasta (http://search.cpan.org/search?query=Bio::Index::Fasta&mode=all) lacks, one of the more
useful ones is that it was built to handle very large sequences and can retrieve sub-sequences from
genome-size sequences efficiently. Here is an example:

use Bio::DB::Fasta;

($file,$id,$start,$end) = ("genome.fa","CHROMOSOME_I",11250,11333);

$db = Bio::DB::Fasta->new($file);

$seq = $db->seq($id,$start,$end);

print $seq,"\n";

This script indexes the genome.fa file, then retrieves a sub-sequence of CHROMOSOME_I, starting at 11250
and ending at 11333. One can also specify what ids can be used as keys, just as in Bio::Index::Fasta
(http://search.cpan.org/search?query=Bio::Index::Fasta&mode=all) .

There's a bit more information on indexing in HOWTO:Local_Databases.

Searching for genes in genomic DNA

Parsers for widely used gene prediction programs - Genscan, Sim4, Genemark, Grail, ESTScan and MZEF -
are available in Bioperl. The interfaces for these parsers are all similar. The syntax is relatively
self-explanatory, see Bio::Tools::Genscan (http://search.cpan.org/search?query=Bio::Tools::Genscan&
mode=all) , Bio::Tools::Genemark (http://search.cpan.org/search?query=Bio::Tools::Genemark&mode=all) ,
Bio::Tools::Grail (http://search.cpan.org/search?query=Bio::Tools::Grail&mode=all) , Bio::Tools::ESTScan
(http://search.cpan.org/search?query=Bio::Tools::ESTScan&mode=all) , Bio::Tools::MZEF
(http://search.cpan.org/search?query=Bio::Tools::MZEF&mode=all) , and Bio::Tools::Sim4::Results
(http://search.cpan.org/search?query=Bio::Tools::Sim4::Results&mode=all) for further details. Here are some
examples on how to use these modules.

use Bio::Tools::Genscan;
$genscan = Bio::Tools::Genscan->new(-file => 'result.genscan');
$gene is an instance of Bio::Tools::Prediction::Gene

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

21 of 25 10/25/2013 08:46 AM

$gene->exons() returns an array of Bio::Tools::Prediction::Exon objects
while($gene = $genscan->next_prediction())
 { @exon_arr = $gene->exons(); }
$genscan->close();

See Bio::Tools::Prediction::Gene (http://search.cpan.org/search?query=Bio::Tools::Prediction::Gene&
mode=all) and Bio::Tools::Prediction::Exon (http://search.cpan.org
/search?query=Bio::Tools::Prediction::Exon&mode=all) for more details.

use Bio::Tools::Sim4::Results;

$sim4 = new Bio::Tools::Sim4::Results(-file => 't/data/sim4.rev',
 -estisfirst => 0);

$exonset is-a Bio::SeqFeature::Generic with Bio::Tools::Sim4::Exons
as sub features
$exonset = $sim4->next_exonset;
@exons = $exonset->sub_SeqFeature();
$exon is-a Bio::SeqFeature::FeaturePair
$exon = 1;
$exonstart = $exons[$exon]->start();
$estname = $exons[$exon]->est_hit()->seqname();
$sim4->close();

See Bio::SeqFeature::Generic (http://search.cpan.org/search?query=Bio::SeqFeature::Generic&mode=all)
and Bio::Tools::Sim4::Exons (http://search.cpan.org/search?query=Bio::Tools::Sim4::Exons&mode=all) for
more information.

A parser for the ePCR program is also available. The ePCR program identifies potential PCR-based
sequence tagged sites (STSs) For more details see the documentation in Bio::Tools::EPCR
(http://search.cpan.org/search?query=Bio::Tools::EPCR&mode=all) . A sample skeleton script for parsing an
ePCR report and using the data to annotate a genomic sequence might look like this:

use Bio::Tools::EPCR;
use Bio::SeqIO;

$parser = new Bio::Tools::EPCR(-file => 'seq1.epcr');
$seqio = new Bio::SeqIO(-format => 'fasta',
 -file => 'seq1.fa');
$seq = $seqio->next_seq;
while($feat = $parser->next_feature) {
 # add EPCR annotation to a sequence
 $seq->add_SeqFeature($feat);
}

Code to query bibliographic databases

Bio::Biblio (http://search.cpan.org/search?query=Bio::Biblio&mode=all) objects are used to query
bibliographic databases, such as MEDLINE. The associated modules are built to work with OpenBQS-
compatible databases (see http://www.ebi.ac.uk/~senger/openbqs). A Bio::Biblio (http://search.cpan.org
/search?query=Bio::Biblio&mode=all) object can execute a query like:

my $collection = $biblio->find ('brazma', 'authors');
while ($collection->has_next) {
 print $collection->get_next;
}

See Bio::Biblio (http://search.cpan.org/search?query=Bio::Biblio&mode=all) , the scripts/biblio/biblio.PLS
script, or the examples/biblio/biblio_examples.pl script for more information.

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

22 of 25 10/25/2013 08:46 AM

Using EMBOSS applications with Bioperl

EMBOSS (European Molecular Biology Open Source Software) is an extensive collection of sequence
analysis programs written in the C programming language (http://emboss.sourceforge.net/). There are a
number of algorithms in EMBOSS that are not found in Bioperl (e.g. calculating DNA melting temperature,
finding repeats, identifying prospective antigenic sites) so if you cannot find the function you want in Bioperl
you might be able to find it in EMBOSS. The Bioperl code that runs EMBOSS programs is
Bio::Factory::EMBOSS (http://search.cpan.org/search?query=Bio::Factory::EMBOSS&mode=all) .

EMBOSS programs are usually called from the command line but the bioperl-run auxiliary library provides a
Perl wrapper for EMBOSS function calls so that they can be executed from within a Perl script. Of course, the
EMBOSS package as well as the bioperl-run must be installed in order for the Bioperl wrapper to function.

An example of the Bioperl Bio::Factory::EMBOSS (http://search.cpan.org
/search?query=Bio::Factory::EMBOSS&mode=all) wrapper where a file is returned would be:

use Bio::Factory::EMBOSS;

$factory = new Bio::Factory::EMBOSS;
$compseqapp = $factory->program('compseq');
%input = (-word => 4,
 -sequence => $seqObj,
 -outfile => $compseqoutfile);

$compseqapp->run(\%input);
$seqio = Bio::SeqIO->new(-file => $compseqoutfile); # etc...

Note that a Seq object was used as input. The EMBOSS object can also accept a file name as input, eg

-sequence => "inputfasta.fa"

Some EMBOSS programs will return strings, others will create files that can be read directly using
Bio::SeqIO. It's worth mentioning that another way to align sequences in Bioperl is to run a program from the
EMBOSS suite, such as 'matcher'. This can produce an output file that Bioperl can read in using AlignIO:

my $factory = new Bio::Factory::EMBOSS;
my $prog = $factory->program('matcher');

$prog->run({ -sequencea => Bio::Seq->new(-id => "seq1",
 -seq => $seqstr1),
 -sequenceb => Bio::Seq->new(-id => "seq2",
 -seq => $seqstr2),
 -aformat => "pair",
 -alternatives => 2,
 -outfile => $outfile});

my $alignio_fmt = "emboss";
my $align_io = new Bio::AlignIO(-format => $alignio_fmt,
 -file => $outfile);

More on Bioperl

Perhaps this article has gotten you interested in learning a bit more about Bioperl. Here are some other
things you might want to look at:

HOWTOs. Each one covers a topic in some detail, but there are certainly some HOWTOs that are
missing that we would like to see written. Would you like to become an expert and write one yourself?

The module documentation. Each module is documented, but the quality and quantity varies by

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

23 of 25 10/25/2013 08:46 AM

module.

Bioperl scripts. You'll find them in the scripts/ directory and in the examples/ directory of the Bioperl
package. The former contains more carefully written and documented scripts that can be installed along
with Bioperl. You should feel free to contribute scripts to either of these directories.

Perl's Documentation System

The documentation for Perl is available using a system known as POD (http://perldoc.perl.org/perlpod.html) ,
which stands for Plain Old Documentation. You can access this built-in documentation by using the perldoc
command. To view information on how to use perldoc, type the following at the command line:

 >perldoc perldoc

Perldoc is a very useful and versatile tool, shown below are some more examples on how to use perldoc.
Read about Perl's built-in print function:

 >perldoc -f print

Read about any module, including any of the Bioperl modules:

 >perldoc Bio::SeqIO

The Basics of Perl Objects

Object-oriented programming (OOP) is a software engineering technique for modularizing code. The
difference between object-oriented programming and procedural programming can be simply illustrated.

A Simple Procedural Example

Assume that we have a DNA sequence stored in the scalar variable $sequence. We'd like to generate the
reverse complement of this sequence and store it in $reverse_complement. Shown below is the procedural Perl
technique of using a function, or sub-routine, to operate on this scalar data:

use Bio::Perl;

$reverse_complement = revcom($sequence);

The hallmark of a procedural program is that data and functions to operate on that data are kept separate. In
order to generate the reverse complement of a DNA sequence, we need to call a function that operates on
that DNA sequence.

A Simple Object-Oriented Example

Shown below is the object-oriented way of generating the reverse complement of a DNA sequence:

$reversed_obj = $seq_obj->revcom;

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

24 of 25 10/25/2013 08:46 AM

The main difference between this object-oriented example and the procedural example shown before is that
the method for generating the reverse complement, revcom, is part of $seq_obj. To put it another way, the
object $seq_obj knows how to calculate and return its reverse complement. Encapsaluting both data and
functions into the same construct is the fundamental idea behind object-oriented programming.

Terminology

In the object-oriented example above, $seq_obj is called an object, and revcom is called a method. An object is
a data structure that has both data and methods associated with it. Objects are separated into types called
classes, and the class of an object defines both the data that it can hold and the methods that it knows. A
specific object that has a defined class is referred to as an instance of that class. In Perl you could say that
each module is actually a class, but for some reason the author of Perl elected to use the term "module"
rather than "class".

That's the sort of explanation you'll get in most programming books, but what is a Perl object really? Usually
a hash. In Bioperl the data that the object contains is stored in a single, complex hash and the object, like
$seq_obj, is a reference to this hash. In addition, the methods that the object can use are also stored in this
hash as particular kinds of references. You could say that an object in Perl is a special kind of hash
reference.

Bioperl uses the object-oriented paradigm, and here are some texts if you want to learn more:

Object Oriented Perl (http://www.manning.com/conway/)

Bioperl's Developer Information, particularly the Advanced BioPerl page, for anyone who'd like to write
their own modules.

The ENSEMBL Perl API (http://www.ensembl.org/info/docs/api/core/core_tutorial.html) , a way of
accessing ENSEMBL (http://www.ensembl.org) 's genomics data in a manner very much like Bioperl.

Retrieved from "http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&oldid=15002"
Category: HOWTOs

This page was last modified on 10 October 2013, at 19:29.
This page has been accessed 152,204 times.
Content is available under GNU Free Documentation License 1.2.

HOWTO:Beginners - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:Beginners&printabl...

25 of 25 10/25/2013 08:46 AM

