
HOWTO:SeqIO
From BioPerl

This HOWTO will teach you about the Bio::SeqIO system for reading and writing sequences of various
formats

Contents

1 Authors
2 Copyright
3 The basics
4 10 second overview
5 Background Information
6 Formats
7 Working Examples
8 To and From a String
9 And more examples...
10 Caveats
11 Error Handling
12 Speed, Bio::Seq::SeqBuilder

Authors

Ewan Birney <birney at ebi.ac.uk (mailto:birney-at-ebi.ac.uk) >
Brian Osborne <briano at bioteam.net (mailto:briano-at-bioteam.net) >
Darin London <darin.london at duke.edu (mailto:darin.london-at-duke.edu) >

Copyright

This document is copyright Ewan Birney. It can be copied and distributed under the terms of the Perl
Artistic License.

The basics

This section assumes you've never seen BioPerl before, perhaps you're a biologist trying to get some
information about some sequences or you're some kind of IT expert interested in learning something
about this hot topic, "bioinformatics". Your first script may want to get some information from a file
containing one or more sequences.

A piece of advice: always use the module Bio::SeqIO! Here's what the first lines of your script might look
like:

#!/bin/perl

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

1 of 14 10/25/2013 08:57 AM

use strict;
use Bio::SeqIO;

my $file = shift; # get the file name, somehow
my $seqio_object = Bio::SeqIO->new(-file => $file);
my $seq_object = $seqio_object->next_seq;

Why use Bio::SeqIO? In part because SeqIO understands the many different sequence file formats and
creates the proper BioPerl object for each format. Some formats, like FASTA sequence format, are
minimal. The fasta format contains a sequence and some kind of identifier, but nothing else is required
nor does the format inherently allow for much more detail, like a feature (a sub-sequence, usually with
some biological property - see the Feature-Annotation HOWTO for more information). When given fasta
SeqIO creates a Bio::Seq object, a more spare object than the Bio::Seq::RichSeq object that's created
when Bio::SeqIO is given formats like Genbank or EMBL, which may contain features and annotations.

Now, should you care what kind of BioPerl object is created by SeqIO? For the most part no - let SeqIO
take care of those details.

10 second overview

Lots of bioinformatics involves processing sequence information in different formats - indeed, there often
seems to be about as many formats as there are programs for processing them. The SeqIO system
handles sequences of many different formats and is the way Bioperl pushes sequences in and out of
objects. You can think of the SeqIO system as "a smart filehandle for sequences".

Background Information

The SeqIO system handles all of the complexity of parsing sequences of many standard formats that
scripters have wrestled with over the years. Given some way of accessing some sequences (flat files,
STDIN and STDOUT, variables, etc.), and a format description, it provides access to a stream of Bio::SeqI
objects tailored to the information provided by the format. The format description is, technically, optional.
SeqIO can try to guess based on known file extensions or content, but if your source doesn't have a
standard file extension or comprehensible content, or isn't even a file at all, it throws up its hands and
tries fasta. Unless you are always working with FASTA files, it is a good idea to get into the practice of
always specifying the format.

Sequences can be fed into the SeqIO system in a variety of ways. The only requirement is that the
sequence be contained in some kind of standard Perl 'Handle' (see IO::Handle (http://search.cpan.org
/search?query=IO::Handle&mode=all)). Most people will make use of the traditional handles: file
handles, and STDIN/STDOUT. However, Perl provides ways of turning the contents of a string into a Handle
as well (more on this below), so just about anything can be fed into SeqIO to get at the sequence
information contained within it. What SeqIO does is create a Handle, or take a given Handle, and parse it
into SeqI compliant objects, one for each entry at a time. It also knows, for each of the supported formats,
things like which record-separator (e.g. "//" for the GenBank sequence format, ">header" for the FASTA
sequence format, etc.) to use, and most importantly, how to parse their key-value based information.
SeqIO does all of this for you, so that you can focus on the things you want to do with the information,
rather than worrying about how to get the information.

Formats

BioPerl's SeqIO system understands lot of formats and can interconvert all of them. Here is a current

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

2 of 14 10/25/2013 08:57 AM

listing of formats, as of version 1.6.

Table 1: Bio::SeqIO modules and formats supported

Name Description File extension Module

abi ABI tracefile ab[i1] Bio::SeqIO::abi

ace Ace database ace Bio::SeqIO::ace

agave AGAVE XML Bio::SeqIO::agave

alf ALF tracefile alf Bio::SeqIO::alf

asciitree write-only, to visualize features Bio::SeqIO::asciitree

bsml

BSML, using XML::DOM
(http://search.cpan.org
/search?query=XML::DOM&
mode=all)

bsml Bio::SeqIO::bsml

bsml_sax

BSML, using XML::SAX
(http://search.cpan.org
/search?query=XML::SAX&
mode=all)

Bio::SeqIO::bsml_sax

chadoxml CHADO sequence format Bio::SeqIO::chadoxml

chaos CHAOS sequence format Bio::SeqIO::chaos

chaosxml Chaos XML Bio::SeqIO::chaosxml

ctf CTF tracefile ctf Bio::SeqIO::ctf

embl EMBL database ebl|emb|dat Bio::SeqIO::embl

entrezgene Entrez Gene ASN1 Bio::SeqIO::entrezgene

excel Excel Bio::SeqIO::excel

exp Staden EXP format exp Bio::SeqIO::exp

fasta FASTA fast|seq|fa|fsa|nt|aa Bio::SeqIO::fasta

fastq
quality score data in
FASTA-like format

fastq Bio::SeqIO::fastq

flybase_chadoxml variant of Chado XML Bio::SeqIO::flybase_chadoxml

game GAME XML Bio::SeqIO::game

gcg GCG gcg Bio::SeqIO::gcg

genbank GenBank gbank|genbank Bio::SeqIO::genbank

interpro InterProScan XML Bio::SeqIO::interpro

kegg KEGG Bio::SeqIO::kegg

largefasta Large files, fasta format Bio::SeqIO::largefasta

lasergene Lasergene format Bio::SeqIO::lasergene

locuslink LocusLink LL_tmpl Bio::SeqIO::locuslink

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

3 of 14 10/25/2013 08:57 AM

metafasta Bio::SeqIO::metafasta

phd Phred phred Bio::SeqIO::phd

pir PIR database pir Bio::SeqIO::pir

pln PLN tracefile pln Bio::SeqIO::pln

qual Phred Bio::SeqIO::qual

raw plain text txt Bio::SeqIO::raw

scf
Standard Chromatogram
Format

scf Bio::SeqIO::scf

seqxml

SeqXML sequence format
(http://seqxml.org) using
XML::LibXML
(http://search.cpan.org
/search?query=XML::LibXML&
mode=all) and XML::Writer
(http://search.cpan.org
/search?query=XML::Writer&
mode=all)

xml Bio::SeqIO::seqxml

strider DNA Strider format Bio::SeqIO::strider

swiss SwissProt sp Bio::SeqIO::swiss

tab tab-delimited Bio::SeqIO::tab

table Table Bio::SeqIO::table

tigr TIGR XML Bio::SeqIO::tigr

tigrxml TIGR Coordset XML Bio::SeqIO::tigrxml

tinyseq NCBI TinySeq XML Bio::SeqIO::tinyseq

ztr ZTR tracefile ztr Bio::SeqIO::ztr

Note: Bio::SeqIO needs the bioperl-ext package and the io_lib library from the Staden
(http://staden.sourceforge.net/) package in order to read the scf, abi, alf, pln, exp, ctf, ztr formats.

For some one of the initial perplexities of BioPerl is the variety of different sequence objects, and this
gives rise to questions like "How do I convert a PrimarySeq object into a RichSeq object?". The answer is
that one should never have to do this, SeqIO takes care of all these conversions. The reason for these
different objects in the first place has to with the information, or lack of information, inherent to the
different file formats. Though we just said that the conversions are done automatically we offer this table
that shows some common formats and their corresponding object types, just to satisfy the curious.

Table 2: Bio::SeqIO modules
and formats supported

Format Object Type

fasta Bio::Seq

genbank Bio::Seq::RichSeq

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

4 of 14 10/25/2013 08:57 AM

pir Bio::Seq

embl Bio::Seq::RichSeq

raw Bio::Seq

ace Bio::PrimarySeq

bsml Bio::Seq::RichSeq

swiss Bio::Seq::RichSeq

Working Examples

The simplest script for parsing sequence files is written out below. It prints out the accession number for
each entry in the file.

first, bring in the SeqIO module

use Bio::SeqIO;

Notice that you do not have to use any Bio:SeqI
objects, because SeqIO does this for you. In fact, it
even knows which SeqI object to use for the provided
format.

Bring in the file and format, or die with a nice
usage statement if one or both arguments are missing.
my $usage = "getaccs.pl file format\n";
my $file = shift or die $usage;
my $format = shift or die $usage;

Now create a new SeqIO object to bring in the input
file. The new method takes arguments in the format
key => value, key => value. The basic keys that it
can accept values for are '-file' which expects some
information on how to access your data, and '-format'
which expects one of the Bioperl-format-labels mentioned
above. Although it is optional, it is good
programming practice to provide > and < in front of any
filenames provided in the -file parameter. This makes the
resulting filehandle created by SeqIO explicitly read (<)
or write(>). It will definitely help others reading your
code understand the function of the SeqIO object.

my $inseq = Bio::SeqIO->new(
 -file => "<$file",
 -format => $format,
);
Now that we have a seq stream,
we need to tell it to give us a $seq.
We do this using the 'next_seq' method of SeqIO.

while (my $seq = $inseq->next_seq) {
 print $seq->accession_number,"\n";
}

This script takes two arguments on the commandline, and input filename and the format of the input file.
This is the basic way to access the data in a Genbank file. It is the same for fasta, swissprot, ace, and all
the others as well, provided that the correct Bioperl-format-label is provided.

Notice that SeqIO naturally works over sets of sequences in files, not just one sequence. Each call to
next_seq will return the next sequence in the 'stream', or undef if the end of the file/stream has been
reached. This allows you to read in the contents of your data one sequence at a time, which conserves

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

5 of 14 10/25/2013 08:57 AM

memory, in contrast with pulling everything into memory first. The undef that is returned at the end of
file/stream is important, as it allows you to wrap successive calls to next_seq in a while loop. This code
snippet would load up all the sequences in a EMBL file into an array:

use strict;
use Bio::SeqIO;

my $input_file = shift;

my $seq_in = Bio::SeqIO->new(
 -format => 'embl',
 -file => $input_file,
);

loads the whole file into memory - be careful
if this is a big file, then this script will
use a lot of memory

my $seq;
my @seq_array;
while($seq = $seq_in->next_seq()) {
 push(@seq_array,$seq);
}

now do something with these. First sort by length,
find the average and median lengths and print them out

@seq_array = sort { $a->length <=> $b->length } @seq_array;

my $total = 0;
my $count = 0;
foreach my $seq (@seq_array) {
 $total += $seq->length;
 $count++;
}

print "Mean length ",$total/$count," Median ",$seq_array[$count/2]->length,"\n";

Now, what if we want to convert one format to another? When you create a Bio::SeqIO object to read in a
flat file, the magic behind the curtains is that each call to next_seq is a complex parsing of the next
sequence record into a SeqI object - not a single line, but the entire record!! It knows when to start
parsing, and when to stop and wait for the next call to next_seq. It knows how to get at the DIVISION
information stored on the LOCUS line etc. To get that Bio::SeqI information back out to a new file, of a
different format (or of the same format, but with sequences grouped in a new way), Bio::SeqIO has a
second method called write_seq that reverses the process done by next_seq. It knows how to write all of
the data contained in the SeqI object into the right places, with the correct labels, for any of the supported
formats. Let's make this more concrete by writing a universal format translator:

use Bio::SeqIO;
get command-line arguments, or die with a usage statement
my $usage = "x2y.pl infile infileformat outfile outfileformat\n";
my $infile = shift or die $usage;
my $infileformat = shift or die $usage;
my $outfile = shift or die $usage;
my $outfileformat = shift or die $usage;

create one SeqIO object to read in,and another to write out
my $seq_in = Bio::SeqIO->new(
 -file => "<$infile",
 -format => $infileformat,
);
my $seq_out = Bio::SeqIO->new(
 -file => ">$outfile",
 -format => $outfileformat,

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

6 of 14 10/25/2013 08:57 AM

);

write each entry in the input file to the output file
while (my $inseq = $seq_in->next_seq) {
 $seq_out->write_seq($inseq);
}

You can think of the two variables, $seq_in and $seq_out as being rather special types of filehandles which
"know" about sequences and sequence formats. However, rather than using the <F> operator to read
files you use the next_seq() method and rather than saying print F $line" you say
$seqio->write_seq($seq_object).

Note: Bio::SeqIO actually allows you to make use of a rather scary/clever part of Perl that can "mimic"
filehandles, so that the <F> operator returns sequences and the print F operator writes sequences.
However, for most people, including us, this looks really really weird and leads to probably more
confusion.

Notice that the universal formatter only required a few more lines of code than the accession number
lister and mean sequence length analyzer (mostly to get more command-line args). This is the beauty of
using the BioPerl system. It doesn't take a lot of code to do some really complex things.

Now, let's play around with the previous code, changing aspects of it to exploit the functionality of the
SeqIO system. Let's take a stream from STDIN, so that we can use other programs to stream data of a
particular format into the program, and write out a file of a particular format. Here we have to make use of
two new things: one Perl-specific, and one SeqIO-specific. Perl allows you to 'GLOB' a filehandle by
placing a '*' in front of the handle name, making it available for use as a variable, or as in this case, as an
argument to a function. In concert, Bio::SeqIO allows you to pass a GLOB'ed filehandle to it using the -fh
parameter in place of the -file parameter. Here is a program that takes a stream of sequences in a given
format from STDIN, meaning it could be used like this:

 >cat myseqs.fa | all2y.pl fasta newseqs.gb genbank

The code for all2y.pl is:

use Bio::SeqIO;
get command-line arguments, or die with a usage statement
my $usage = "all2y.pl informat outfile outfileformat\n";
my $informat = shift or die $usage;
my $outfile = shift or die $usage;
my $outformat = shift or die $usage;

create one SeqIO object to read in, and another to write out
*STDIN is a 'globbed' filehandle with the contents of Standard In
my $seqin = Bio::SeqIO->new(
 -fh => *STDIN,
 -format => $informat,
);
my $seqout = Bio::SeqIO->new(
 -file => ">$outfile",
 -format => $outformat,
);

write each entry in the input file to the output file
while (my $inseq = $seqin->next_seq) {
 $seqout->write_seq($inseq);
}

Why use files at all? We can pipe STDIN to STDOUT, which could allow us to plug this into some other

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

7 of 14 10/25/2013 08:57 AM

pipeline, something like:

 cat *.seq | in2out.pl EMBL Genbank | someother program

The code for in2out.pl could be:

use Bio::SeqIO;
get command-line arguments, or die with a usage statement
my $usage = "in2out.pl informat outformat\n";
my $informat = shift or die $usage;
my $outformat = shift or die $usage;

create one SeqIO object to read in, and another to write out
my $seqin = Bio::SeqIO->new(
 -fh => *STDIN,
 -format => $informat,
);
my $outseq = Bio::SeqIO->new(
 -fh => *STDOUT,
 -format => $outformat,
);

write each entry in the input to the output
while (my $inseq = $seqin->next_seq) {
 $outseq->write_seq($inseq);
}

To and From a String

A popular question many people have asked is "What if I have a string that has a series of sequence
records in some format, and I want to make it a Bio::Seq object?" You might want to do this if you allow
users to paste in sequence data into a web form, and then do something with that sequence data. This
can be accomplished by turning the contents of a string into a standard globbed perl handle (since Perl
5.8.0 this can be done with open. The IO::String (http://search.cpan.org/search?query=IO::String&
mode=all) module can be used in other cases) and using the -fh parameter to supply a filehandle rather
than a filepath.

This isn't a complete program, but gives you the most relevant bits. Assume that there is some type of
CGI form processing, or some such business, that pulls a group of sequences into a variable, and also
pulls the format definition into another variable. Since Bio::seqIO uses the file extension to determine the
file format when it's not specified, and because there's no file extension when using filehandles, the
format needs to be supplied.

use IO::String; # only needed for Perl versions previous to 5.8.0
use Bio::SeqIO;

get a string into $string somehow, with its format in $format, say from a web form.
my $string = ">SEQ1\nacgt\n>revseq1\ntgca\n";
my $format = "fasta";

my $stringfh = IO::String->new($string); # Use this for Perl BEFORE 5.8.0
open($stringfh, "<", \$string) or die "Could not open string for reading: $!"; # Use this for Perl AFTER 5.8.0 (inclusive)

my $seqio = Bio::SeqIO-> new(
 -fh => $stringfh,
 -format => $format,
);

while(my $seq = $seqio->next_seq) {

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

8 of 14 10/25/2013 08:57 AM

 # process each seq
 print $seq->id . ' = '.$seq->seq()."\n";
}

Naturally you can also take a sequence object and write it, in some format, to a string. The code would
look something like this (note the direction of the less/greater than sign on the open function):

use IO::String; # only needed for Perl versions BEFORE 5.8.0
use Bio::SeqIO;

my $string;
my $stringfh = IO::String->new(\$string); # Use this for Perl BEFORE 5.8.0
open($stringfh, ">", \$string) or die "Could not open string for writing: $!"; # Use this for Perl AFTER 5.8.0 (inclusive)

my $seqOut = Bio::SeqIO->new(
 -format => 'swiss',
 -fh => $io,
);
$seqOut->write_seq($seq_obj);
print $string;

And more examples...

The -file parameter in Bio::SeqIO can take more than a filename. It can also take a string that tells it to
pipe something else into it. This is of the form '-file' => 'command |'. Notice the vertical bar at the end,
just before the single quote. This is especially useful when you are working with large, gzipped files
because you just don't have enough disk space to unzip them (e.g. a Genbank full release file), but can
make FASTA files from them. Here is a program that takes a gzipped file of a given format and writes out
a FASTA file, used like:

 gzip2fasta.pl gbpri1.seq.gz Genbank gbpri1.fa

Let the the code begin...

use Bio::SeqIO;
get command-line arguments, or die with a usage statement
my $usage = "gzip2fasta.pl infile informat outfile\n";
my $infile = shift or die $usage;
my $informat = shift or die $usage;
my $outfile = shift or die $usage;

create one SeqIO object to read in, and another to write out
my $seqin = Bio::SeqIO->new(
 -file => "/usr/local/bin/gunzip -c $infile |",
 -format => $informat,
);

my $seqout = Bio::SeqIO->new(
 -file => ">$outfile",
 -format => 'Fasta',
);

write each entry in the input to the output file
while (my $inseq = $seqin->next_seq) {
 $seqout->write_seq($inseq);
}

Bioperl also allows a 'pipe - out' to be given as an argument to -file. This is of the form '-file' => "|
command". This time the vertical bar is at the beginning, just after the first quote. Let's write a program to

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

9 of 14 10/25/2013 08:57 AM

take an input file, and write it directly to a WashU Blastable Database, without ever writing out a FASTA
file, like:

 any2wublastable.pl myfile.gb Genbank mywublastable p

And the code for any2wublastable.pl is:

use Bio::SeqIO;

get command-line arguments, or die with a usage statement
my $usage = "any2wublastable.pl infile informat outdbname outdbtype\n";
my $infile = shift or die $usage;
my $informat = shift or die $usage;
my $outdbname = shift or die $usage;
my $outdbtype = shift or die $usage;

create one SeqIO object to read in, and another to write out
my $seqin = Bio::SeqIO->new(
 -file => "<$infile",
 -format => $informat,
);
my $seqout = Bio::SeqIO->new(
 -file => "| /usr/local/bin/xdformat -o $outdbname -${outdbtype} -- -",
 -format => 'Fasta',
);

write each entry in the input to the output
while (my $inseq = $seqin->next_seq) {
 $seqout->write_seq($inseq);
}

Some of the more seasoned Perl hackers may have noticed that the new method returns a reference,
which can be placed into any of the data structures used in Perl. For instance, let's say you wanted to
take a GenBank file with multiple sequences, and split the human sequences out into a human.gb file, and
all the rest of the sequences into the other.gb file. In this case, we will use a hash to store the two handles
where 'human' is the key for the human output, and 'other' is the key to other, so the usage would be:

 splitgb.pl inseq.gb

Here's what splitgb.pl looks like:

use Bio::SeqIO;

get command-line argument, or die with a usage statement
my $usage = "splitgb.pl infile\n";
my $infile = shift or die $usage;

my $inseq = Bio::SeqIO->new(
 -file => "<$infile",
 -format => 'Genbank',
);

my %outfiles = (
 'human' => Bio::SeqIO->new(
 -file => '>human.gb',
 -format => 'Genbank',
),
 'other' => Bio::SeqIO->new(
 -file => '>other.gb',
 -format => 'Genbank',
),

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

10 of 14 10/25/2013 08:57 AM

);

while (my $seqin = $inseq->next_seq) {
 # here we make use of the species attribute, which returns a
 # species object, which has a binomial attribute that
 # holds the binomial species name of the source of the sequence
 if ($seqin->species->binomial =~ m/Homo sapiens/) {
 $outfiles{'human'}->write_seq($seqin);
 } else {
 $outfiles{'other'}->write_seq($seqin);
 }
}

Now, let's use a multidimensional hash to hold a GenBank output and a FASTA output for both splits.

use Bio::SeqIO;
get command-line argument, or die with a usage statement
my $usage = "splitgb.pl infile\n";
my $infile = shift or die $usage;

my $inseq = Bio::SeqIO->new(
 -file => "<$infile",
 -format => 'Genbank',
);

my %outfiles = (
 human => {
 Genbank => Bio::SeqIO->new(
 -file => '>human.gb',
 -format => 'Genbank',
),
 Fasta => Bio::SeqIO->new(
 -file => '>human.fa',
 -format => 'Fasta',
),
 },
 other => {
 Genbank => Bio::SeqIO->new(
 -file => '>other.gb',
 -format => 'Genbank',
),
 Fasta => Bio::SeqIO->new(
 -file => '>other.fa',
 -format => 'Fasta',
),
 }
);

while (my $seqin = $inseq->next_seq) {
 if ($seqin->species->binomial =~ m/Homo sapiens/) {
 $outfiles{'human'}->{'Genbank'}->write_seq($seqin);
 $outfiles{'human'}->{'Fasta'}->write_seq($seqin);
 } else {
 $outfiles{'other'}->{'Genbank'}->write_seq($seqin);
 $outfiles{'other'}->{'Fasta'}->write_seq($seqin);
 }
}

And finally, you might want to make use of the SeqIO object in a Perl one-liner. Perl one-liners are Perl
programs that make use of flags to the Perl binary allowing you to run programs from the command-line
without actually needing to write a script into a file. The -e flag takes a quoted string, usually single
quoted, and attempts to execute it as code, while the -M flag takes a module name and tells the one-liner
to use that module. When using a single quote to enclose the string to -e, you also have to make use of
perl's string modifier q(string) to single quote a string without confusing the shell. Let's find out how many
GSS sequences are in gbpri1.seq.gz. Note that we have placed new-line characters in this to make it
easier to read, but in practice you wouldn't actually hit the return key until you were ready to run the

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

11 of 14 10/25/2013 08:57 AM

program.

 perl -MBio::SeqIO -e 'my $gss = 0; my $in = Bio::SeqIO->new(q(-file) => q(/usr/local/bin/gunzip -c gbpri1.seq.gz |),
 q(-format) => q(Genbank)); while (my $seq = $in->next_seq) { $gss++ if ($seq->keywords =~ m/GSS/);}
 print "There are $gss GSS sequences in gbpri1.seq.gz\n";'

Caveats

Because BioPerl uses a single, generalized data structure to hold sequences from all formats, it does
impose its own structure on the data. For this reason, a little common sense is necessary when using the
system. For example, a person who takes a flat file pulled directly from GenBank, and converts it to
another GenBank file with BioPerl, will be surprised to find subtle differences between the two files - try
"diff origfile newfile" to see what we are talking about. Just remember when using BioPerl that it was
never designed to "round trip" your favorite formats. Rather, it was designed to store sequence data from
many widely different formats into a common object framework and make that framework available to
other sequence manipulation tasks in a programmatic fashion.

Error Handling

If you gave an impossible filename to the first script, it would have in fact died with an informative error
message. In programming jargon, this is called "throwing an exception". An example would look like:

 user@localhost ~/src/bioperl-live> perl t.pl bollocks silly

 ------------- EXCEPTION -------------
 MSG: Could not open bollocks for reading: No such file or directory
 STACK Bio::Root::IO::_initialize_io Bio/Root/IO.pm:259
 STACK Bio::SeqIO::_initialize Bio/SeqIO.pm:441
 STACK Bio::SeqIO::genbank::_initialize Bio/SeqIO/genbank.pm:122
 STACK Bio::SeqIO::new Bio/SeqIO.pm:359
 STACK Bio::SeqIO::new Bio/SeqIO.pm:372
 STACK toplevel t.pl:9

These exceptions are very useful when errors occur because you can see the full route, or "stack trace",
of where the error occurred and right at the end of this is the line number of the script which caused the
error, which in this case we called t.pl.

The fact that these sorts of errors are automatically detected and by default cause the script to stop is a
good thing, but you might want to handle these yourself. To do this you need to "catch the exception" as
follows:

use strict;
use Bio::SeqIO;

my $input_file = shift;
my $output_file = shift;

we have to declare $seq_in and $seq_out before
the eval block as we want to use them afterwards

my $seq_in;
my $seq_out;

eval {
 $seq_in = Bio::SeqIO->new(

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

12 of 14 10/25/2013 08:57 AM

 -format => 'genbank',
 -file => $input_file,
);

 $seq_out = Bio::SeqIO->new(
 -format => 'fasta',
 -file => ">$output_file",
);
};
if($@) { # an error occurred
 print "Was not able to open files, sorry!\n";
 print "Full error is\n\n$@\n";
 exit(-1);
}
my $seq;
while($seq = $seq_in->next_seq()) {
 $seq_out->write_seq($seq);
}

The use of eval { ... } accompanied by testing the value of the $@ variable (which is set on an error) is a
generic Perl approach, and will work with all errors generated in a Perl program, not just the ones in
BioPerl. Notice that we have to declare $seq_in and $seq_out using my before the eval block - a common
gotcha is to wrap a eval block around some my variables inside the block - and now my localizes those
variables only to that block. If you use strict this error will be caught. And, of course, you are going to use
strict right?

Speed, Bio::Seq::SeqBuilder

If you are processing large volumes of complex sequence data and only need to extract a few parameters
(for example, if you only need the sequences from genbank files) you can use Bio::Seq::SeqBuilder to
restrict what parts of your data Bio::SeqIO will parse, saving lots of time and speeding up your program.

For example, it can be 6 times faster to parse only 3 fields out of genbank files:

#!/usr/bin/perl

use strict;
use Bio::SeqIO;
use Benchmark qw(:all);

my $file = "gbbct10.seq";

timethis(1, sub {
 my $in = Bio::SeqIO->new(-file => $file, -format => "genbank");
 for (1..1000) {
 my $seq = $in->next_seq;
 }
});

timethis(1, sub {
 my $in = Bio::SeqIO->new(-file => $file, -format => "genbank");
 my $builder = $in->sequence_builder();
 $builder->want_none();
 $builder->add_wanted_slot('display_id','desc','seq');
 for (1..1000) {
 my $seq = $in->next_seq;
 }
});

timethis 1: 10 wallclock secs (9.64 usr + 0.02 sys = 9.66 CPU) @ 0.10/s (n=1)
 (warning: too few iterations for a reliable count)
timethis 1: 1 wallclock secs (1.63 usr + 0.00 sys = 1.63 CPU) @ 0.61/s (n=1)

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

13 of 14 10/25/2013 08:57 AM

 (warning: too few iterations for a reliable count)

See HOWTO:Feature-Annotation for more discussion.

Retrieved from "http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&oldid=14300"
Category: HOWTOs

This page was last modified on 31 August 2011, at 17:53.
This page has been accessed 131,304 times.
Content is available under GNU Free Documentation License 1.2.

HOWTO:SeqIO - BioPerl http://www.bioperl.org/w/index.php?title=HOWTO:SeqIO&printable=yes

14 of 14 10/25/2013 08:57 AM

