
Examination questions for BINP13, 2014-10-31 (09.00 - 13.00).

Approximately 15p are required for passing the exam.

Part 1: Interprete Perl Code

Question 1 (3p): Create the following scalars:

• $var1: A reference to the named array @arr

• $var2: A reference to the anonymous hash consisting of the keys-values pairs: ’one’-3432 and
’Perl’-’Fun’

• $var3: A reference to then named hash %tjohej

$var1 = \@arr;

$var2 = {’one’ => 3432, ’Perl’ => ’Fun’};

$var3 = \%tjohej;

Question 2 (1p): What is the output of the following program?

#! /usr/bin/perl -w

use strict;

my $var1 = ’Perl’;

my $var2 = "$var1 is ";

my $var3 = $var2 . "really \"fun\"!";

print "$var3\n";

1 Perl is really "fun"!

1

Question 3 (2p): What is the output of the following program?

#! /usr/bin/perl -w

use strict;

my $line1 = ’RGT+456 S453DFR 564++AD45QWE4 123456G 5f;;RT 45()23’;

my $line2 = ’---C456 ----IA23232AN-------- Q-------1454436565555’;

my $cnt1 = 0;

while($line1 =~ /[A-Z]{2,3}\s?\d+/g) {

$cnt1++;

}

print "$cnt1\n";

$line2 =~ s/(-|\s|A\d+A|[456])//g;

$line2 =~ tr/CQ/BP/;

print "$line2\n";

1 4

2 BINP13

Question 4 (2p): What is the output of the following program?

#! /usr/bin/perl -w

use strict;

my @nums = (3,-3,5,8);

my $val = shift @nums;

my $i = 1;

while ($i <= $val) {

push @nums, $i;

$i++;

}

my $cnt = 0;

foreach my $val (@nums) {

$cnt += $val;

}

print "$cnt\n";

1 16

2

Question 5 (2p): What is the output of the following program?

#! /usr/bin/perl -w

use strict;

my $str = ’xxxxxI-A-L-GG-I-TWW-KE-A-P-GG-ER-TTA-Lyyyyyy’;

$str =~ s/^[xy]+//;

$str =~ s/[xy]+$//;

$str =~ s/-A-/ /g;

my @parts = split /-G\w-|-T\w{2}-/, $str;

my $res = join ’’, @parts;

print "$res\n";

1 I LIKE PERL

3

Part 2: Write Perl code

Question 6 (3p): You have a nucleotide sequence defined in the scalar $seq. Write Perl code
that replace all codons ’TAG’, ’TAA’ and ’TGA’ with the character ’-’ and print the number of
replacements done.

1 #! /usr/bin/perl -w

2 use strict;

3

4 # Not actually part of the solution

5 my $seq = ’TCTAACCGATGGCTTCTTAGGTTAGCCCAGCATGAGCAGCGAGCTGACGGCTCGTTCCAG’;

6

7 # Two step solution

8

9 # Count

10 my $cnt = 0;

11 while ($seq =~ /TAG|TAA|TGA/g) {

12 $cnt++;

13 }

14

15 # Replace

16 $seq =~ s/(TAG|TAA|TGA)/-/g;

17

18 print "Made $cnt replacements\n";

19

20 # All in one step

21 my $cnt = ($seq =~ s/(TAG|TAA|TGA)/-/g);

22 print "Made $cnt replacements\n";

Question 7 (3p): The Unix command grep can be used to search for text in files. As an example,

>> grep sub parse.pl

will print all lines in the file ’parse.pl’ that contains the string ’sub’.

Write a Perl program that works like the Unix command grep. The first argument to the Perl
program should be the string to search for and the second argument should be the file to search in.

1 #! /usr/bin/perl -w

2 use strict;

3

4 my $str = $ARGV[0];

5 open my $FH, ’<’, $ARGV[1] or die "Cannot open file $ARGV[1]. $!\n";

6

7 while (my $line = <$FH>) {

8 print $line if($line =~ /$str/);

9 }

10 close $FH;

4

Question 8 (3p): Write Perl code that calculates the sum

100∑
k=1

1

k2
= (1 + 1/4 + 1/9 + 1/16 + ... + 1/10000)

and prints it on the screen.

1 #! /usr/bin/perl -w

2 use strict;

3 use Math::Trig ’:pi’;

4

5 my $sum = 0;

6 for (my $k = 1; $k <= 100; $k++) {

7 $sum += 1/$k**2;

8 }

9 print "The sum is $sum\n";

10

11 # Another solution using map

12 my $sum2 = 0;

13 map {$sum2 += 1/$_**2} (1..100);

14

15 print "The sum is $sum2\n";

16

17 # Or the math solution :-)

18 print "The sum is approximately ", pi*pi/6, "\n";

19

Question 9 (3p): Write a subroutine that takes a reference to a hash as the argument. We can
assume that all values in the supplied hash are numbers. Return a reference to an array containing
all keys in the supplied hash that have values in the interval [0,10].

1 #! /usr/bin/perl -w

2 use strict;

3

4 my %hh = (’Hank’ => -30, ’Dolly’ => 2 , ’Tanya’ => 20, ’Johnny’ => 9);

5

6 print "Keys that have values in [0,10]\n";

7 my $ref = filterKeys(\%hh);

8 foreach (@{$ref}) {

9 print "$_\n";

10 }

11

12 sub filterKeys {

13 my ($href) = @_;

14

15 my @res;

16 foreach my $key (keys %{$href}) {

17 my $x = $href->{$key};

18 push @res, $key if ($x >= 0 && $x <= 10);

19 }

20

21 return \@res;

22 }

5

Question 10 (3p): Write Perl code that reads a scalar from standard input. We can assume
that this scalar contains a sequence of amino acid letters. Find the number of occurrences of the
letter D in this sequence. You should solve this task using the builtin function index and not using
regular expressions. The documentation for index follows here:

index STR,SUBSTR,POSITION

index STR,SUBSTR

The index function searches for one string within another, but without

the wildcard-like behavior of a full regular-expression pattern match.

It returns the position of the first occurrence of SUBSTR in STR at or

after POSITION. If POSITION is omitted, starts searching from the

beginning of the string. POSITION before the beginning of the string or

after its end is treated as if it were the beginning or the end, respectively.

POSITION and the return value are based at zero. If the substring is not

found, "index" returns -1.

1 #! /usr/bin/perl -w

2 use strict;

3

4 print "Give aa sequence: ";

5 my $str = <STDIN>;

6 chomp $str;

7

8 my ($off, $idx, $cnt) = (0, 0, 0);

9

10 # The argement here is not that important

11 # since I will terminate the loop with a last statement

12 while ($idx != -1) {

13

14 $idx = index($str, ’D’, $off);

15

16 # If $idx == -1, no more ’D’ was found, then stop

17 last if ($idx == -1);

18

19 # If we come here it means that a ’D’ was found. Increase the counter

20 $cnt++;

21

22 # We also need to update the starting point of the next search

23 $off = $idx + 1;

24 }

25 print "Found $cnt occurences of ’D’ in the string: \n$str\n";

Good Luck!

/Mattias

6

