
Comments on the lectures for chapter 18

18.0-18.2

Local angular velocity
The main achievment in the beginning of the chapter is perhaps not to reach eq. (18.7), but
to then approximate it!

The centrifugal force can be absorbed into the acceleration field g, with negligible numerical
consequences. As I discussed on the lecture, including the centrifugal term into g will make
g point vertically to the local earth surface.

The angular velocity vector Ω has one vertical component Ωz and one horizontal Ωy, pointing
north. The effects of the horizontal Ω component can also be neglected in most applications
(and always in this course). The cross product Ωy × vxêx points in the vertical direction,
and is usually negligible compared to g. The cross product Ωy× vzêz points in the west-east
direction and is negligible compared to other terms, because “vz tends to be small”. That is
a fair statement in the atmosphere and ocean applications discussed in this chapter.

The only ficticious acceleration field we need to consider is therefore −2Ωz × v.

Important: Until eq. (18.7), the book uses Ω for the total angular velocity. In the next section
and onwards, it instead uses notation Ω0 for the total, and lets Ω denote the local angular
velocity. In lecture notes and extra problems, I will use notation Ωz for the local angular
velocity vector.

Rossby number
Very important and beautiful is the introduction of the Rossby number, that allows us to
neglect the non-linear advective term. Horray! This means that we will not apply eq (18.10)
anywhere, but immediately approximate it into (18.12).

Equation (18.12) is the fundamental equation for geostrophic balance, written in a way
independent of coordinate system. (When we use notation Ωz, we have specified a z-direction,
though.) As often, this general equation is a bit far from finding answers to specific problems.
The text, from (18.12) to the example on Great Danish Belt, illustrates how to go from the
general equation to more specific (but also not generally valid!) equations.

I did not have time to show the Taylor-Proudman theorem. The derivation involves some
gymnastics with ∇ and cross products. I hope to return to this when we talk about the
Ekman layer.

18.3 Ekman Layer

Extra-curricular parts
Anything marked with *. Also, the Taylor columns (bottom of p. 314). The section leading



to eq. 18.27 need not be reproduced, but the student is expected to be able to confirm that
the equation is a solution to its problem, and analyze its properties.

Since this is an introductory course, we tend to focus on very simple systems, where boundary
conditions are easily treated. Trying to do that with geostrophic flow, we reach strange
results (there cannot be any wind, for example). Thus, the Ekman layer is our representative
of an important procedure in fluid dynamics, where the simple solutions are applied in their
respective domain, and a boundary layer that interpolates between the solutions is studied
in more detail afterwards. If the boundary layer is found to have reasonable thickness, we
confirm a posteriori that the procedure was valid.

The lectures followed a slightly different path than the book:

We look over distances where the flow can be assumed fairly independent of horizontal
coordinates. In geostrophic balance we then have constant pressure gradient and velocities

g − 1

ρ
∇p = (ax, ay, 0), (1)

v = (vx, vy, 0). (2)

We now add viscosity to geostrophic balance:

0 = g − 1

ρ
∇p− 2Ωz × v + ν∇2v + ν̂∇(∇ · v), (3)

and assume that the only change we need to consider is the one we are interested in: the
height dependence of the flow. Thus we keep eq. (1) but modify the velocity field to

v(z) = (vx(z), vy(z), 0). (4)

The horizontal components of our equation of motion become

0 = ax + 2Ωzvy + νv′′x, (5)

0 = ay − 2ωzvx + νv′′y . (6)

Introducing

ux(z) = vx(z)− ay
2Ωz

, (7)

uy(z) = vy(z) +
ax

2Ωz

, (8)

δ =

√
ν

Ωz

, (9)

we find

u′′x = − 2

δ2
uy (10)

u′′y =
2

δ2
ux (11)

which combine to the fourth-order equation

u(4)y (z) = − 4

δ4
uy(z). (12)



Since (−1)1/4 = 1+i√
2

exp(inπ
4
) for integer n, we find four independent solutions that after

some book-keeping can be combined to

uy = exp(
z

δ
)[A cos

z

δ
+B sin

z

δ
] + exp(−z

δ
)[C cos

z

δ
+D sin

z

δ
], (13)

with four undetermined constants A,B,C,D. From eq. (10) we then find

ux = exp(
z

δ
)[B cos

z

δ
− A sin

z

δ
] + exp(−z

δ
)[−D cos

z

δ
+ C sin

z

δ
]. (14)

Example: Frithiof Nansen in the arctic

Frithof Nansen is standing on floating ice in the arctic and the wind blows in the x direction.
How does he move?

For simplicity, assume hydrostatic equilibrium at large depths: v(z → −∞) = 0, which
implies ax = ay = 0. Thus, we must have u(−∞) = 0 and C = D = 0.

The two remaining boundary conditions are at the surface, related to the shear forces from
the wind. Since the wind is in the x direction, we have no shear force in the y direction,
which implies

v′y(0) ∝ σyz = 0. (15)

From v′y(0) = u′y(0) = . . . = 1
δ
(A + B) we can replace A and B by a single undetermined

constant − 1√
2
U (carefully chosen for future cosmetic reasons) and write

vy(z) =
1√
2
U exp(

z

δ
)[sin

z

δ
− cos

z

δ
] = U exp(

z

δ
) sin(

z

δ
− π

4
). (16)

From eq. (10) we get

vx(z) = U exp(
z

δ
) cos(

z

δ
− π

4
). (17)

The final constant U can be related to the shear force in the x direction, but we already have
what we need to find the direction of Nansen’s motion. At depth z, the current has an angle
θ(z) relative to the x direction given by

tan θ =
vy
vx

= tan(
z

δ
− π

4
). (18)

Nansen on the ice at z = 0 thus moves 45 degrees to the right of the wind, in qualitative
agreement with the explorer’s own observations. (On the southern hemisphere, Ωz is negative,
which requires a re-definition of δ, and eventually a 45 degrees leftward direction.)

Example: Wind above ground

This example is covered in the book.



Far above ground, we assume a geostrophic wind in the x direction v(∞) = (U, 0, 0). For
geostrophic balance to hold in this region, we require g − 1

ρ
∇p = 2Ωz × v = (0, 2ΩzU, 0)

which means ax = 0, ay = 2ΩzU so that uy = vy, ux = vx − U . Thus u(∞) = 0 and
A = B = 0.

The no-slip boundary condition at z = 0 implies u(0) = (−U, 0, 0), so that C = 0 and
D = U . Thus

vx = U [1− exp(−z
δ

) cos
z

δ
] (19)

vy = U exp(−z
δ

) sin
z

δ
(20)

The direction of the wind as function of height is not so easy to find, but near ground
(meaning z � δ) we use 1− exp(−ε) cos ε = 1− (1− ε+O(ε2))(1 +O(ε2)) = ε+O(ε2) and
exp(−ε) sin ε = [1 +O(ε)][ε+O(ε3)] = ε+O(ε2) to find

vy(0)

vx(0)
= 1. (21)

The wind near ground is directed 45 degrees to the left (on the northern hemisphere) of the
geostrophic wind higher up.

Note that the wind near ground to some extent is moving in the direction of the negative
pressure gradient. Near ground, the boundary conditions reduce the wind and therefore the
Coriolis effect, so that the pressure gradient “wins”. This is similar to the tee-leaf effect when
you stir your tea, as we demonstrated with map-pins in a bucket of water. There, it was a
competition between centrifugal and pressure forces that was “won” by pressure near the
bottom of the bucket.


