Improving parton showers with multi-jet NLO calculations

Stefan Prestel

(in collaboration with Leif Lönnblad)

(Lund University)

Theory seminar, SLAC, June 20, 2012
Outline

• Introduction: CKKW-L1 matrix element merging in parton showers.
• Example: One jet above a scale ρ_c.
• The NL3 prescription2 to move towards NLO accuracy: A (reasonably?) short how-to.
• Results for $W + 0$ and $W + 1$ at NLO.

1For Catani Krauss Kuhn Webber – Lönnblad.
2For Nils Lavesson and Leif Lönnblad.
Improving parton showers with “multi”-jet NLO calculations

Stefan Prestel

(in collaboration with Leif Lönnblad)

(Lund University)

Theory seminar, SLAC, June 20, 2012
Introduction: CKKW-L merging

Problem: To describe soft/collinear and hard jets together, virtues of both Fixed Order and Resummation are needed, since

- Matrix Elements (ME) accurate to fixed order far away from phase space boundaries, but breaks down e.g. in infrared region.
- Parton Shower (PS) resummation constructed to work in collinear region, with some improvements for soft gluon resummation.

⇒ Approaches (somewhat) complementary.
Introduction: CKKW-L merging

Problem: To describe soft/collinear and hard jets together, virtues of both Fixed Order and Resummation are needed, since

- Matrix Elements (ME) accurate to fixed order far away from phase space boundaries, but breaks down e.g. in infrared region.
- Parton Shower (PS) resummation constructed to work in collinear region, with some improvements for soft gluon resummation.

⇒ Approaches (somewhat) complementary.
⇒ One solution: “Add” them:
Introduction: CKKW-L merging

Problem: To describe soft/collinear and hard jets together, virtues of both Fixed Order and Resummation are needed, since

- Matrix Elements (ME) accurate to fixed order far away from phase space boundaries, but breaks down e.g. in infrared region.
- Parton Shower (PS) resummation constructed to work in collinear region, with some improvements for soft gluon resummation.

⇒ Approaches (somewhat) complementary.
⇒ One solution: “Add” them:
- But just adding both gives massive double counting.
 → Use ME above a cut t_{MS}, and PS below t_{MS}.
Introduction: CKKW-L merging

Problem: To describe soft/collinear and hard jets together, virtues of both Fixed Order and Resummation are needed, since

- Matrix Elements (ME) accurate to fixed order far away from phase space boundaries, but breaks down e.g. in infrared region.
- Parton Shower (PS) resummation constructed to work in collinear region, with some improvements for soft gluon resummation.

⇒ Approaches (somewhat) complementary.
⇒ One solution: “Add” them:

- But just adding both gives massive double counting.
 → Use ME above a cut t_{MS}, and PS below t_{MS}.
- This introduces another problem: Cut dependence.
Problem: To describe soft/collinear and hard jets together, virtues of both Fixed Order and Resummation are needed, since

- Matrix Elements (ME) accurate to fixed order far away from phase space boundaries, but breaks down e.g. in infrared region.
- Parton Shower (PS) resummation constructed to work in collinear region, with some improvements for soft gluon resummation.

⇒ Approaches (somewhat) complementary.
⇒ One solution: “Add” them:

- But just adding both gives massive double counting.
 → Use ME above a cut t_{MS}, and PS below t_{MS}.
- This introduces another problem: Cut dependence.
 → Apply the same weights above and below the cut.
- This means reweighting the multi-jet ME with
 (a) : α_s factors for α_s-running in the PS,
 (b) : PDF ratios for backward evolution,
 (c) : No-emission probabilities, e.g. $\Pi_{S+0}(\rho_0, \rho_1)$ for no emissions before the first emission scale ρ_1.
Example:
One jet above ρ_c

(ρ: evolution p_T

z: Auxiliary variables

t_{ms}: Merging scale)

Take (a) from +1 jet matrix element \mathcal{T}_1. Reweight with the PS weight, i.e. pick this state with weight

$$
\left[f_1(\mu_1) \alpha_s(\mu_R) \mathcal{T}_1 \right] d\Phi_1^{ME} \times \mathcal{W}_{Path} \times \frac{f_0(\rho_0)}{f_1(\mu_1)} \\
\times \frac{\alpha_s(\rho_1)}{\alpha_s(\mu_R)} \frac{f_1(\rho_1)}{f_0(\rho_1)} \Pi_{S+0}(\rho_0, \rho_1) \Pi_{S+1}(\rho_1, \rho_c)
$$

Take (b) from +0 jet matrix element \mathcal{T}_0, with one shower splitting, i.e. with weight

$$
\left[f_0(\mu_0) \mathcal{T}_0 \right] d\Phi_0^{ME} \times \frac{f_0(\rho_0)}{f_0(\mu_0)} \\
\times \alpha_s(\rho_1) \frac{f_1(\rho_1)}{f_0(\rho_1)} P(z) d\rho_1 dz_1 \Pi_{S+0}(\rho_0, \rho_1) \Pi_{S+1}(\rho_1, \rho_c)
$$
One jet above ρ_c

Combining this, the merged approximation to the inclusive zero-jet cross section is

$$d\sigma^{CKKW} = f_0(\rho_0) \left\{ \right.$$

$$T_1 d\Phi_1^{ME} w_{Path} \alpha_s(\rho_1)$$

$$\Theta(t(S_{+1,me}) - t_{MS})$$

$$\frac{f_1(\rho_1)}{f_0(\rho_1)} \Pi_{S+0}(\rho_0, \rho_1) \Pi_{S+1}(\rho_1, \rho_c)$$

$$+ T_0 d\Phi_0^{ME} P(z) d\rho_1 dz_1 \alpha_s(\rho_1)$$

$$\Theta(t_{MS} - t(S_{+1,ps}))$$

$$\frac{f_1(\rho_1)}{f_0(\rho_1)} \Pi_{S+0}(\rho_0, \rho_1) \Pi_{S+1}(\rho_1, \rho_c) \left\} \right.$$

The merging scale dependence vanishes if the red probabilities are equal, and if the no-emission probabilities Π_{S^+} are identical (because then the blue Θ-functions add to one).
CKKW-L merging prescription

Easily extendible to arbitrary number of additional jets: \(n \)-parton MEs will be reweighted with \(w_{\text{CKKW-L}} \) to produce the exclusive (\(n \)-jet) cross section

\[
d\sigma^{\text{CKKW}}_n = f_n(\mu_f) T_n d\Phi_n^{\text{ME}} \\
\left[\prod_{i=1}^{n} \frac{\alpha_s(\rho_i)}{\alpha_s(\mu_r)} \frac{f_{i-1}(\rho_{i-1})}{f_{i-1}(\rho_i)} \right] \prod_{i=1}^{n} \left[\frac{f_n(\rho_n)}{f_n(\mu_f)} \right] \left[\prod_{i=1}^{n} \frac{\alpha_s(\rho_i)}{\alpha_s(\mu_r)} \frac{f_{i-1}(\rho_{i-1})}{f_{i-1}(\rho_i)} \right] \Pi_{S+n}(\rho_n, \rho_{\text{MS}})
\]

\(w_{\text{CKKW-L}} \)

Compare to the parton shower exclusive cross section

\[
d\sigma^{\text{PS,ex}}_n = f_0(\rho_0) T_0 d\Phi_0^{\text{ME}} \\
\left[\prod_{i=1}^{n} \frac{\alpha_s(\rho_i)}{\alpha_s(\mu_r)} \frac{f_{i-1}(\rho_{i-1})}{f_{i-1}(\rho_i)} \right] \Pi_{S+n}(\rho_n, \rho_{\text{MS}})
\]

\(\Rightarrow \) After some PDF shuffling, you can see that CKKW-L replaces the product of splitting kernels with the full tree-level predictions.
Results of CKKW-L merging at the LHC

Figure: Number of jets in $W+$jets events as measured by ATLAS. Three additional jets (above $t_{\text{MS}} = 30$ GeV) were merged with PYTHIA8.
Results of CKKW-L merging at the LHC

In the ATLAS data, the inclusive jet multiplicity (electron channel) was measured as follows:

\[\sigma(W + \geq N_{\text{jet}} \text{ jets}) \text{ [pb]} \]

<table>
<thead>
<tr>
<th>(N_{\text{jet}})</th>
<th>MC/data</th>
<th>ATLAS data</th>
<th>PYTHIA8</th>
<th>ME3PS (t_{\text{MS}} = 30 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure: Number of jets in \(W +\)jets events as measured by ATLAS. Three additional jets (above \(t_{\text{MS}} = 30 \text{ GeV}\)) were merged with PYTHIA8.

⇒ For more exclusive observables, CKKW-L does better than the default shower.
But is that enough?

![Graph showing p_T(Z) distributions for Z (Drell-Yan) at 1960 GeV ppbar]

Figure: 1960 GeV ppbar Z (Drell-Yan)

- **p_T(Z) (muon channel)**
 - D0
 - Hw++ UE7-2 (PwHg)
 - Sherpa

Legend:
- D0
- Hw++ UE7-2 (PwHg)
- Sherpa

Note:
- mcplots.cern.ch
- 6.3M events
- Rivet 1.8.0, Herwig++ Powheg 2.5.2, Sherpa 1.3.1

Graph Details:
- Y-axis: dσ/dp_T(Z) [pb/GeV]
- X-axis: p_T(Z) [GeV]
- Ratio to D0

Legend Note:
- D0_2010_S8671338
 - Herwig++ Powheg 2.5.2, Sherpa 1.3.1
But is that enough?

- Sorry about the colours!
But is that enough?

- Sorry about the colours!
- Merged prediction gets shape right.
- POWHEG NLO matched PS gives good normalisation for mid/low p_T.
What can we learn from that?

1. We need NLO accuracy for a good normalisation.
2. For a better description of the tail, we would like Z+1 jet at NLO.
3. For a better description of the low p_T end, we need better logarithmic accuracy for Z+0 jet (also related to 1. and 2.). Skipped here, sorry.

⇒ We want NLO multi-jet merging.
The NL^3 prescription to perform NLO merging.
Multi-jet NLO + PS: How do we get there?

- Avoid double counting states.
 ⇒ Define NLO exclusive cross section.

- Avoid double counting orders of α_s.
 ⇒ Expand CKKW cross section in α_s, remove things we want to NLO accuracy, and add back true NLO.

- Define merging conditions to ensure NLO accuracy.

- Implement, and check.
Multi-jet NLO + PS: General idea

0 jet, tree

\[Q_{\text{MS}} \]

0 jet, virtual

\[Q_{\text{MS}} \]

1 jet, tree

\[\Delta(\text{Shower}) - \alpha_s\text{-term} \]

1 jet, virtual

\[\alpha_s\text{-term} \]

2 jet, tree

\[\Delta(\text{Shower}) \]

\[\text{Correct } \alpha_s\text{-term + higher orders} \]
Tree level configurations for n partons can contain $n - 1$ resolved jets.
NLO configurations for n partons can contain $n - 1$ and $n + 1$ resolved jets.
⇒ To avoid counting states with $n + 1$ resolved jets twice, we need to define an NLO n-jet cross section that contains exactly n resolved jets.
⇒ Need an NLO weight for n-resolved jets phase space points.
NL³ prerequisites: Exclusive NLO cross sections (\(\bar{B}\))

\[
d\sigma_{n,\text{ex},f_{b1}}^{NLO} = d\phi_n J_n(\phi_n) T_{n,f_{b1}} + d\phi_n J_n(\phi_n) \left[\mathcal{V}_{n,f_{b1}} + \sum_{\alpha_r \in \{\alpha_r \mid f_{b1}\}} \mathcal{I}_{n+1,\alpha_r} \right]
\]

\[
+ d\bar{\phi}_n \sum_{\alpha_r \in \{\alpha_r \mid f_{b1}\}} \int_{\rho_{\text{MS}}} d\Phi^{(0)} \mathcal{J}_n(\bar{\phi}_n) (R_{n+1,\alpha_r} - D_{n+1,\alpha_r})
\]

\[
+ d\bar{\phi}_n \sum_{\alpha_r \in \{\alpha_r \mid f_{b1}\}} \int_{\rho_{\text{MS}}} d\Phi^{(1)} \left\{ \mathcal{J}_{n+1}(\phi_{n+1}) (R_{n+1,\alpha_r}) - \mathcal{J}_n(\bar{\phi}_n) D_{n+1,\alpha_r} \right\}
\]

The red part contains resolved \(n + 1\) parton states, and should be zero (by vetoing). \(n + 1\)-parton phase space points will be included in the next higher multiplicity.
⇒ NLO cross section “exclusive” in the same way that tree-level is.

The blue part is what is collected in \(\bar{B}\) in POWHEG.
NL^3 prerequisites: Exclusive NLO cross sections (\(\bar{B}\))

\[
d\sigma_{n,ex,f_{b1}}^{NLO} = d\phi_n J_n(\phi_n) T_{n,f_{b1}} + d\phi_n J_n(\phi_n) \left[\nu_{n,f_{b1}} + \sum_{\alpha_r \in \{\alpha_r|f_{b1}\}} I_{n+1,\alpha_r} \right] \\
+ d\bar{\phi}_n \sum_{\alpha_r \in \{\alpha_r|f_{b1}\}} \int_{\rho_{MS}} d\Phi_{rad} J_n(\phi_n) (R_{n+1,\alpha_r} - D_{n+1,\alpha_r}) \\
+ d\bar{\phi}_n \sum_{\alpha_r \in \{\alpha_r|f_{b1}\}} \int_{\rho_{MS}} d\Phi_{rad}^{(1)} \left\{ J_{n+1}(\phi_{n+1}) (R_{n+1,\alpha_r} - C_{n+1,\alpha_r}) \right\} \\
- J_n(\bar{\phi}_n) D_{n+1,\alpha_r}
\]

The red part contains resolved \(n + 1\) parton states, and should be zero (by vetoing or phase space subtraction). \(n + 1\)-parton phase space points will be included in the next higher multiplicity.

\(\Rightarrow\) NLO cross section “exclusive” in the same way that tree-level is.

The blue part is what is collected in \(\bar{B}\) in POWHEG.
NL³ prerequisites: Rescaled CKKW-L cross sections

We now have a calculation exact to $\mathcal{O}(\alpha_s^{n+1})$.

⇒ Replace CKKW approximation of these orders by correct terms.
For this, remember the first few CKKW exclusive cross sections:

\[
\begin{align*}
\sigma_0^{\text{CKKW}} &= f_0(\rho_0) |M_{S_0}|^2 d\Phi_{\text{ME}}^0 K\Pi_{S+n}(\rho_0, \rho_{\text{MS}}) \\
\sigma_1^{\text{CKKW}} &= f_1(\rho_0)\alpha_s |M_{S_1}|^2 d\Phi_{\text{ME}}^1 K\frac{\alpha_s(\rho_1)}{\alpha_s} \frac{f_1(\rho_1)}{f_1(\rho_0)} \frac{f_0(\rho_0)}{f_0(\rho_1)} \Pi_{S+0}(\rho_0, \rho_1) \Pi_{S+1}(\rho_1, \rho_{\text{MS}})
\end{align*}
\]

Red to include α_s-running, blue to amend backward branching probability, green to include probability for no emissions.

The CKKW weights (red \times blue \times green) incorporate the PS resummation. Cross sections have been rescaled by a K-factor (inspired by POWHEG, which rescales the “seed” cross section B by \bar{B}/B).

We will of course remove the $\mathcal{O}(\alpha_s^1)$ term of K, Π_{S+i}, PDFs and $\alpha_s(\rho)$!
So let’s expand these to $O(\alpha_s^1)$

$$d\sigma_{0}^{\text{CKKW}} = f_0(\rho_0) |\mathcal{M}_{s+0}|^2 d\Phi_0^{\text{ME}} \left[1 + K_{|\alpha_s} \right]$$

$$- \frac{\alpha_s}{2\pi} \int_{\rho_{MS}} \frac{f_1(\mu_f)}{f_0(\mu_f)} P_1(z) d\rho dz + \frac{1}{2} \left(\frac{\alpha_s}{2\pi} \right)^2 \left(\int_{\rho_{MS}} \frac{f_1(\mu_f)}{f_0(\mu_f)} P_1(z) d\rho dz \right)^2$$

Replace blue terms by correct 0-jet NLO expression.
So let’s expand these to $\mathcal{O}(\alpha_s^1)$

\[
\begin{align*}
 d\sigma_0^{\text{CKKW}} &= f_0(\rho_0) |\mathcal{M}_{S_{+0}}|^2 d\Phi_0^{\text{ME}} \left[1 + K|_{\alpha_s} \right. \\
 &\left. - \frac{\alpha_s}{2\pi} \int_{\rho_{\text{MS}}} \frac{f_1(\mu_f)}{f_0(\mu_f)} P_1(z) d\rho dz + \frac{1}{2} \left(\frac{\alpha_s}{2\pi} \right)^2 \left(\int_{\rho_{\text{MS}}} \frac{f_1(\mu_f)}{f_0(\mu_f)} P_1(z) d\rho dz \right)^2 \right] \\
 d\sigma_1^{\text{CKKW}} &= f_1(\rho_0) \alpha_s |\mathcal{M}_{S_{+1}}|^2 d\Phi_1^{\text{ME}} \left[1 + K|_{\alpha_s} + \frac{\alpha_s}{4\pi} \beta_0 \ln\left(\frac{\rho_1}{\mu_r} \right) \right. \\
 &\left. + \frac{f_1(\rho_1)}{f_1(\rho_0)} |_{\alpha_s} + \frac{f_0(\rho_0)}{f_0(\rho_1)} |_{\alpha_s} \right. \\
 &\left. - \frac{\alpha_s}{2\pi} \int_{\rho_1}^{\rho_0} \frac{f_1(\mu_f)}{f_0(\mu_f)} P_1(z) d\rho dz - \frac{\alpha_s}{2\pi} \int_{\rho_{\text{MS}}}^{\rho_1} \frac{f_2(\mu_f)}{f_1(\mu_f)} P_2(z) d\rho dz \right]
\end{align*}
\]

Replace red terms by correct 1-jet NLO expression.
So let’s expand these to $\mathcal{O}(\alpha_s^1)$

\[
d\sigma_0^{CKKW} = f_0(\rho_0) |\mathcal{M}_{S+0}|^2 d\Phi_0^{\text{ME}} \left[1 + K|_{\alpha_s} \right]
\]

\[
- \frac{\alpha_s}{2\pi} \int_{\rho_{\text{MS}}}^{\rho_0} \frac{f_1(\mu_f)}{f_0(\mu_f)} P_1(z) d\rho d\tau + \frac{1}{2} \left(\frac{\alpha_s}{2\pi} \right)^2 \left(\int_{\rho_{\text{MS}}}^{\rho_1} \frac{f_1(\mu_f)}{f_0(\mu_f)} P_1(z) d\rho d\tau \right)^2
\]

\[
d\sigma_1^{CKKW} = f_1(\rho_0) \alpha_s |\mathcal{M}_{S+1}|^2 d\Phi_1^{\text{ME}} \left[1 + K|_{\alpha_s} + \frac{\alpha_s}{4\pi} \beta_0 \ln(\frac{\rho_1}{\mu_r}) \right]
\]

\[
+ \frac{f_1(\rho_1)}{f_1(\rho_0)} \bigg|_{\alpha_s} + \frac{f_0(\rho_0)}{f_0(\rho_1)} \bigg|_{\alpha_s}
\]

\[
- \frac{\alpha_s}{2\pi} \int_{\rho_0}^{\rho_1} \frac{f_1(\mu_f)}{f_0(\mu_f)} P_1(z) d\rho d\tau - \frac{\alpha_s}{2\pi} \int_{\rho_{\text{MS}}}^{\rho_1} \frac{f_2(\mu_f)}{f_1(\mu_f)} P_2(z) d\rho d\tau
\]

\[
d\sigma_2^{CKKW} = f_2(\rho_0) \alpha_s^2 |\mathcal{M}_{S+2}|^2 d\Phi_2^{\text{ME}}
\]

Keep higher multiplicity ME if no NLO calculation available.
Merging conditions

Now that we have a feeling what we want to replace, we can set up conditions to ensure NLO accuracy, while taking all higher orders from the shower:

\[
\begin{align*}
\alpha_s^n t_n w_T + \alpha_s^{n+1} v_n w_V + \alpha_s^{n+1} r_n w_R &= \alpha_s^n t_n + \alpha_s^{n+1} (v_n + r_n) \\
&+ \alpha_s^n t_n \sum_{i=2}^{\infty} \alpha_s^i w_{PS,i} \\
\end{align*}
\]

and

\[
\alpha_s^{n+1} t_{n+1} w_H = \alpha_s^{n+1} t_{n+1} \sum_{i=0}^{\infty} \alpha_s^i w_{PS,i} ,
\]

For (2), we can immediately put

\[
w_H = w_{CKKW-L}
\]
NLO merging weights

These conditions can be checked order by order. Then, from the ansatz

\[
w_{T,V,R} = a_{T,V,R,0} + \sum_{i=1}^{\infty} b_{T,V,R,i} \alpha_s^i + \sum_{i=1}^{\infty} c_{T,V,R,i} \left(\frac{1}{\alpha_s} \right)^i
\]

we find the solutions

\[
w_T = w_{\text{CKKW-L}} - w_{\text{CKKW-L}}|_{\alpha_s} + \sum_{i=1}^{\infty} c_{T,i} \left(\frac{1}{\alpha_s} \right)^i
\]

\[
w_V = 1 + \sum_{i=2}^{\infty} c_{V,i} \left(\frac{1}{\alpha_s} \right)^i, \quad w_R = 1 + \sum_{i=2}^{\infty} c_{R,i} \left(\frac{1}{\alpha_s} \right)^i
\]

of which

\[
w_T = w_{\text{CKKW-L}} - w_{\text{CKKW-L}}|_{\alpha_s}
\]

\[
w_V = 1 = w_R
\]

is a special case, as expected. The PS resummation is still encoded in the merging weight \(w_{\text{CKKW-L}}\). The weights \(w_{\text{CKKW-L}}|_{\alpha_s}\) are the coloured terms we have found in the expansion of the merging weight.
Consequences

- Algorithm works on exclusive NLO n-jet cross section.
 ⇒ Define a cut in the NLO calculation.
 If not possible (e.g. in the POWHEG-BOX), the calculation can be made exclusive by subtracting phase space points not passing the cut.3

3The phase space subtraction can be constructed by reclustering the next higher multiplicity tree-level events.
Consequences

• Algorithm works on exclusive NLO n-jet cross section.
 \Rightarrow Define a cut in the NLO calculation.
 If not possible (e.g. in the POWHEG-BOX), the calculation can be made exclusive by subtracting phase space points not passing the cut.3

• The condition $w_V = 1$ also means that the merging scale has to be defined by the jet algorithm (ρ) used for shower evolution.

3The phase space subtraction can be constructed by reclustering the next higher multiplicity tree-level events.
Consequences

- Algorithm works on exclusive NLO n-jet cross section.
 \Rightarrow Define a cut in the NLO calculation.
 If not possible (e.g. in the POWHEG-BOX), the calculation can be made exclusive by subtracting phase space points not passing the cut.\(^3\)

- The condition $w_V = 1$ also means that the merging scale has to be defined by the jet algorithm (ρ) used for shower evolution.

- We want to keep the NLO 0-jet inclusive cross section fixed.
 Merging multiple NLO calculations introduces terms $\propto \alpha_s^2 \ln^2 \frac{1}{\rho_{\text{MS}}}$, which are beyond the control of the PS.
 \Rightarrow Need to assess if these terms will prove a problem for reasonable ρ_{MS} values.

\(^3\)The phase space subtraction can be constructed by reclustering the next higher multiplicity tree-level events.
Putting it all together.

We can now write down an algorithm to merge multiple NLO calculations with a parton shower.
Putting it all together.

We can now write down an algorithm to merge multiple NLO calculations with a parton shower.

For tree-level sample:

1. Generate events according to tree-level matrix element.
2. For each event, generate CKKW-L weight and subtract the $\mathcal{O}(\alpha_s^1)$ term $w_{\text{MS}}|_{\alpha_s}$.
3. Start shower from the last reconstructed scale ρ_n. Veto emissions above ρ_{MS}.
Putting it all together.

We can now write down an algorithm to merge multiple NLO calculations with a parton shower.

For tree-level sample:

1. Generate events according to tree-level matrix element.
2. For each event, generate CKKW-L weight and subtract the $\mathcal{O}(\alpha_s^1)$ term $w_{\text{MS}}|_{\alpha_s}$.
3. Start shower from the last reconstructed scale ρ_n. Veto emissions above ρ_{MS}.

For $\mathcal{O}(\alpha_s^1)$ (virtual + insertion + regularised unresolved real) sample:

1. Generate events according to NLO exclusive n-jet cross section. If the $\mathcal{O}(\alpha_s^1)$ sample was not generated with a cut on resolved real emissions, remove the $+1$-resolved jet phase space points.
2. For each event, start shower at ρ_{MS}.
Implementation

To implement this scheme, we need to know how to generate the weights needed for the tree-level samples:

\[K \]

\[\frac{\alpha_s}{4\pi} \beta_0 \ln\left(\frac{\rho_1}{\mu_r} \right) \]

\[\frac{f_i(\rho_j)}{f_i(\rho_k)} \bigg|_{\alpha_s} \]

\[\frac{\alpha_s}{2\pi} \int_{\rho_i}^{\rho_{i-1}} \frac{f_1(\mu_f)}{f_0(\mu_f)} P(z) d\rho dz \]

\[: \text{Calculate the (fixed) K-factor beforehand by dividing the cross sections.} \]
\[: \text{Easily calculated by evaluating the logarithm.} \]
\[: \text{Evolve } f_i(\rho_j) \text{ to } \rho_k \text{ according to (integrated) DGLAP equation, then use numerical integration to calculate integral.} \]
\[: \text{Generated by counting the PS emissions between } \rho_{i-1} \text{ and } \rho_i, \text{ generated with fixed } \alpha_s \text{ and fixed PDF scales } \mu_f. \]
... and that’s what it looks like:
Let’s check some results!
Results: Rapidity of W-Boson, NL$^3_{0}$.

Delightfully boring, since the POWHEG-BOX phase space mapping keeps the W-rapidity fixed.

Figure: W+0@NLO from POWHEG-BOX.
Results: p_T of hardest jet, NL_0^3.

Delightfully boring, since the distribution is given completely by the $+1$-jet tree-level ME, for which the merging scale dependence cancels.

Figure: $W+0@\text{NLO}$ from POWHEG-BOX.
Results: p_T of hardest jet, NL$_0^3$.

Delightfully boring, since the distribution is given completely by the $+1$-jet tree-level ME, for which the merging scale dependence cancels.

⇒ Yet another POWHEG W-production interface, but now with MENLOPS for free.

Figure: $W+0@NLO$ from POWHEG-BOX.
Results: p_T of the hardest jet, NL$_{01}^3$.

New: Combined W and W + 1 jet at NLO.

The increase in the tail partly from the W+2 jet tree-level ME (25% at 100 GeV), and partly the effect of the p_T-dependence of the W+1 NLO cross section.

Figure: W+0@NLO from POWHEG-BOX and W+1@NLO from POWHEG-BOX.
Conclusions and Outlook

• For a consistent description of the shape of soft/collinear and multiple hard jets, we need to combine Matrix Elements and Parton Showers.

• CKKW-L merging is implemented in Pythia8 (public since version 8.157).

• Tree-level merging has disadvantages over NLO matching schemes.

• CKKW-L can be extended to allow for the inclusion of virtual corrections. This can be achieved by removing the $\mathcal{O}(\alpha_s^1)$-term of the CKKW-L weight and adding back NLO corrections.

• We have implemented a modified NL3 scheme in Pythia8.

• So far, we have checked $W +$ jets as test case.

• We hope we will be able to check the method further and publish the code in autumn.
Conclusions and Outlook

• For a consistent description of the shape of soft/collinear and multiple hard jets, we need to combine Matrix Elements and Parton Showers.

• CKKW-L merging is implemented in Pythia8 (public since version 8.157).

• Tree-level merging has disadvantages over NLO matching schemes.

• CKKW-L can be extended to allow for the inclusion of virtual corrections. This can be achieved by removing the $\mathcal{O}(\alpha_s^1)$-term of the CKKW-L weight and adding back NLO corrections.

• We have implemented a modified NL3 scheme in Pythia8.

• So far, we have checked W + jets as test case.

• We hope we will be able to check the method further and publish the code in autumn.

Thank you for your time.
Improving parton showers with multi-jet NLO calculations

Stefan Prestel

(in collaboration with Leif Lönnblad)

(Lund University)

Theory seminar, SLAC, June 20, 2012
Back up
Exclusive NLO cross sections (\(\bar{B}\)), notation

\[I_n(\phi_n) \] : Jet observable, measured at phase space point \(\phi_n\), giving an \(n\)-jet prediction.

\[T_{n,f_{b1}} \] : Tree level ME with \(n\) partons, flavour \(f_{b1}\).

\[V_{n,f_{b1}} \] : Virtual correction with \(n\) partons, flavour \(f_{b1}\).

\[I_{n+1,\alpha_r} \] : Integrated subtraction for \(n\) partons and flavour \(f_{b1}\) (derived from approximate \(n + 1\) with flavour \(\alpha_r\)).

\[R_{n+1,\alpha_r} \] : Real emission ME with \(n + 1\) partons and flavour \(\alpha_r\).

\[D_{n+1,\alpha_r} \] : Subtraction terms for \(n + 1\) partons with flavour \(\alpha_r\).
Rescaled CKKW-L cross sections, K-factor in POWHEG

POWHEG rescales the “seed” cross section B by a phase space dependent K-factor \bar{B}/B). Schematically:

$$d\sigma^{PH} = d\phi_0 \bar{B} \times \left[\Delta(\rho_{max}, \rho_c)O(\phi_0) + \int_{\rho_c} d\Phi_{rad} \frac{R}{\bar{B}} \Delta(\rho_{max}, \rho(\Phi_{rad}))O(\phi_1) \right]$$

$$= d\phi_0 B \frac{\bar{B}}{B} \times \left[\Delta(\rho_{max}, \rho_c)O(\phi_0) + \int_{\rho_c} d\Phi_{rad} \frac{R}{B} \Delta(\rho_{max}, \rho(\Phi_{rad}))O(\phi_1) \right]$$

$$= d\phi_0 B \frac{\bar{B}}{B} \times \left[\left(1 - \int_{\rho_c} d\Phi_{rad} \frac{R}{B} + \frac{1}{2} \left(- \int_{\rho_c} d\Phi_{rad} \frac{R}{B} \right)^2 \right) O(\phi_0) \right.$$

$$+ \left. \int_{\rho_c} d\Phi_{rad} \frac{R}{B} \left(1 - \int_{\rho_c} d\Phi_{rad} \frac{R}{B} \right) O(\phi_1) + O(\alpha_s^3) \right]$$

In the last lines, POWHEG rescales the $O(\alpha_s^2)$ terms. Since the subsequent showering is unitary, this “rescaled seed cross section” multiplies all approximate higher orders introduced by the shower.
Merging conditions, notation

\[
\begin{align*}
\alpha_s^n t_n &= \sum_{f_{b1}} d\phi_n \mathcal{J}_n(\phi_n) T_{n, f_{b1}} \\
\alpha_s^{n+1} v_n &= \sum_{f_{b1}} d\phi_n \mathcal{J}_n(\phi_n) \left[V_{n, f_{b1}} + \sum_{\alpha_r \in \{\alpha_r | f_{b1}\}} \mathcal{I}_{n+1, \alpha_r} \right] \\
\alpha_s^{n+1} r_n &= \sum_{f_{b1}} \sum_{\alpha_r \in \{\alpha_r | f_{b1}\}} d\bar{\phi}_n \left\{ \int_{\rho_{MS}} d\Phi_{\text{rad}} \mathcal{J}_n(\bar{\phi}_n) [\mathcal{R}_{n+1, \alpha_r} - \mathcal{D}_{n+1, \alpha_r}] - \int_{\rho_{MS}} d\Phi_{\text{rad}} \mathcal{J}_n(\bar{\phi}_n) \mathcal{D}_{n+1, \alpha_r} \right\}
\end{align*}
\]
NLO merging weights

\[w_T = w_{\text{CKKW-L}} - w_{\text{CKKW-L}} \big|_{\alpha_s} + \sum_{i=1}^{\infty} c_{T,i} \left(\frac{1}{\alpha_s} \right)^i \]

\[w_V = 1 + \sum_{i=2}^{\infty} c_{V,i} \left(\frac{1}{\alpha_s} \right)^i , \quad w_R = 1 + \sum_{i=2}^{\infty} c_{R,i} \left(\frac{1}{\alpha_s} \right)^i \]

We do not want to include spurious \(\mathcal{O} \left(\alpha_s^{n-i} \right) \) terms, and do not want to disturb the intricate cancellations between \(\nu_n \) and \(\rho_n \):

\[c_{T,1} = 0 \quad c_{T,i} + c_{V,i} + c_{R,i} = 0 \quad c_{V,i} = c_{R,i} \]

For example, we can also allow

\[w_T = w_{\text{CKKW-L}} - w_{\text{CKKW-L}} \big|_{\alpha_s} - \sum_{i=2}^{\infty} 2 c_{V,i} \left(\frac{1}{\alpha_s} \right)^i \]

\[w_V = w_R = 1 + \sum_{i=2}^{\infty} c_{V,i} \left(\frac{1}{\alpha_s} \right)^i \]

We choose the simplest form since we could not think of a useful, shower-producible factor that has an expansion in negative powers of \(\alpha_s \).
Merging scale variation for 2-jet CKKW-L merging.

![Graph showing the deviation in dσ/dpT,1 between CKKW-L and Pythia8 for different scale variations.](image)
k_\perp dependence \bar{B} for W^+ jet.