Lecture 15

DM candidates

No such candidates in the SM \(\rightarrow \) DM data. Require an extension of the SM

Among the candidates \(\rightarrow \) neutralino is the most natural

\[\text{stable} \quad \text{abundance} \quad \text{is in the right ballpark} \]

Other candidates require an adjustment of parameters to fit the DM observations

the zoo is huge! Only the most popular candidates are considered!

\(\text{LSP} \rightarrow \text{neutralino} \)

\(\text{SUSY} \rightarrow \text{fermions (e.g.)}, \text{bosons (e.g.)} \rightarrow \text{Higgs (e.g.)} \)

\(\text{SUSY} \) must be broken \(\rightarrow M_{\text{SUSY}} \) arbitrary!

negative SUSY searches \(\rightarrow (M_S \geq 100 \text{ GeV}) \rightarrow \) opportunities for the LHC

SUSY extensions \(\rightarrow B, L, \) numbers violation

R-parity \(\rightarrow \) forbids baryon and lepton number violation at low energies

\(\rightarrow \) even/odd particles

\[\begin{pmatrix} +1 \\ -1 \end{pmatrix} \]

SUSY particles \(\rightarrow \) SUSY particles \(\rightarrow \) sparticles and \(\rightarrow \) neutralinos

\(\text{slightly constrained by the LHC data!} \)

participates in weak interactions

detection methods

\[\text{neutralino} \rightarrow \text{neutralino} \quad \text{and gravitino!} \]

LSP in a wide range of parameters

\(\text{LSP is absolutely stable!} \)

MSSM: \(M_{\text{SUSY}} \approx 1 \text{ TeV} \)

\(\text{SUSY} \rightarrow \text{weakly decays} \rightarrow \text{final state particles} \)

\(\rightarrow \) LSP

\(\text{LSP is a candidate for DM!} \)

\(\text{LSP in a wide range of parameters!} \)

\(\text{LSP is stable!} \)

\(\text{neutralino} \rightarrow \text{neutralino} \rightarrow \text{neutralino, neutrino, and gravitino!} \)

\(\text{automatically satisfies to DM data!} \)
X is neutral Majorana fermion (a linear combination of $\bar{\psi}, \bar{\chi}, \bar{\phi}, \bar{\psi}, \bar{\chi}, \bar{\phi}$)

$\frac{\Delta X}{\Delta \psi} \propto \frac{M_{SM}}{\Delta \psi}$ doublet.

$g_X = 2$, $g_X(h) \sim 100$

$T_f \propto \frac{M_X}{25}$, $\delta X \approx 0.8 \times 10^{-7}$ \left(\frac{M_X}{100 \text{ GeV}}\right)^2$ for $\Delta \psi = 1/30$

For $100 \text{ GeV} < M_X < 37 \text{ TeV}$ \Rightarrow $0.001 \leq \delta X \leq 10$

Let us refine this estimate further.

Assumption: neutralino is the only particle ($M_{\phi} \gg M_X$) associated with creation/annihilation.

Neutrino pair creation/annihilation \rightarrow **Boltzmann equation**

$$\frac{d\rho_X}{dt} + 3H \rho_X = - \langle \sigma_{\text{อนุรักษ์}} \cdot v \rangle \left(n_X^2 - n_{\text{อนุรักษ์}}^2 \right) \quad (\text{\textcircled{1}})$$

Kinetic and angular averaged, with equilibrium distribution.

Thermal eq. density

The annihilation probability of a X per unit time

$$T_{\text{อนุรักษ์}} = \frac{\langle \sigma_{\text{อนุรักษ์}} \cdot v \rangle}{n_X} \rightarrow \text{ann. rate} \int \frac{d(n_X \cdot a^2)}{dt} \frac{\delta_{\text{อนุรักษ์}}}{\text{อนุรักษ์}} \int_{\text{อนุรักษ์}}$$

in thermal eq. The creation rate

$$\int \frac{d(n_X \cdot a^2)}{dt} \frac{\delta_{\text{อนุรักษ์}}}{\text{อนุรักษ์}} \rightarrow \int \langle \sigma_{\text{อนุรักษ์}} \cdot v \rangle n_X^2 \cdot a^2 \rightarrow \text{e.g. distributions over momenta}

$$\langle \sigma_{\text{อนุรักษ์}} \cdot s \rangle = \int dp_1 dp_2 \int_{\text{อนุรักษ์}} F_{\text{อนุรักษ์}}(p_1) F_{\text{อนุรักษ์}}(p_2) v \cdot s_{\text{อนุรักษ์}} \int F_1(p_1) = 1$$

Introducing $\Delta X = \frac{n_X}{S}, \Delta_{\text{อนุรักษ์}} = \frac{n_{\text{อนุรักษ์}}}{S}$, where the entropy $S = \frac{2 \pi^2}{45} g_X T^3$

$M_X \gtrsim 50 \text{ GeV}$ \Rightarrow $70 \leq \delta X \leq 106.75$

Entropy conservation

$$a^2 \cdot S = \text{constant} \rightarrow \frac{d\Delta X}{dt} = S \cdot \frac{dA_X}{dt} - 3H$$
\(\xi = \text{const} \Rightarrow T = \frac{M_X}{M_X} \Rightarrow \frac{dA_X}{d\xi} = \frac{\langle 0 \nu \rangle}{M_X} \cdot S \left(\frac{A_X^2 - \xi^2}{M_X^2} \right) \)

\(S(\tau) = \frac{2\tau}{45} \xi \tau^3 \), \(H(\tau) = \frac{\tau^2}{M_{PL}^2} \Rightarrow \)

\(M_{PL} = \sqrt{\frac{350}{8\pi^2}} \frac{M_X}{\xi} \)

\[\frac{dA_X}{d\xi} = \langle 0 \nu \rangle \cdot \frac{\xi}{355} \frac{M_X}{M_{PL}} \cdot (A_X^2 - \xi^2) \]

in non-relativistic limit

\(\langle U \rangle = 2 \langle U_X^2 \rangle \)

\(\langle E_{\text{kin}} \rangle = \frac{M_X \langle U_X^2 \rangle}{2} = \frac{3}{2} T \Rightarrow \frac{3}{2} \times M_X \Rightarrow \)

\(\langle U_X^2 \rangle = 3 \xi \Rightarrow \langle U \rangle = 6 \xi \)

\(\Delta_X(\tau_f) \approx \Delta_X^{eq}(\tau_f) \) at \(\tau \ll \tau_f \Rightarrow \Delta_X^{eq}(\tau_f) \approx \Delta_X(\tau_f) \)

using \(\Delta_X(\tau = 0) \ll \Delta_X^{eq}(\tau_f) \) and integrating

\[\Delta_X^{-1}(\tau = 0) = (a_0 \frac{x_f + 3a_1 X_f^2}{355 \frac{M_X}{M_{PL}}}) \]

\(D_X = \frac{M_X + n_x}{g} \approx \frac{1}{h^2} \cdot 0.9 \times 10^{-10} \frac{1}{x_f \sqrt{\xi}} \cdot \text{Gev}^2 \]

The freeze out temperature \(T_f \) can be obtained from (see previous lecture)

\[\frac{1}{g_X g_0} \left(\frac{2\pi}{M_X T_f} \right)^{3/2} e^{M_X / T_f} = \frac{M_{PL}^3}{T_f^2} \Rightarrow \]

\[x_f = \ln \left(\frac{3550 a_0}{8 \pi^2 \frac{g_X}{g_0} M_X M_{PL}} \right) \times (a_0 + 6a_1 x_f) \]

\(a_0 = a_0 + 6a_1 x_f \)

\(\) depend on dominant annihilation channel

II. Sneutrino \(\bar{\nu} \)

Weak interactions are the same as for \(\nu \).

\(\bar{\nu} + \text{nuclei} \rightarrow \bar{\nu} + \text{nuclei} \)

\(G_{\text{elastic}} \Rightarrow \text{exp. bounds} (2-3 \text{rd ord}) \)

\(\) But right sneutrinos are fine!

\(\Rightarrow 0 \) is ruled out!
Local SUSY \rightarrow SilCRA

graviton $s = 2$

gravitino $s = \frac{3}{2}$

spontaneously broken SUSY \rightarrow $M_{3/2} = \frac{\sqrt{8}F}{3M_{Pl}}$ $\sqrt{F} \sim M_{Susy}$

Phenomenologically, 1 TeV $\leq \sqrt{F} \leq M_{Pl}$

2×10^{-6} eV $\leq M_{3/2} \leq M_{Pl}$ it can be stable for $M_{3/2} \leq 100$ GeV

The DM candidate?

(deflection is very difficult!)

IV Axioms $M_{Ax} = 10^{-5} - 10^{-6}$ eV \rightarrow consistent with astrophysical data

Can serve as DM candidate (homogeneous axion field oscillating after the QCD epoch)

\Rightarrow Superheavy relic particles

in thermal equilibrium $T \gg M_{Ax}$ \rightarrow overproduced, bound $M_{Ax} \ll 100$ eV of these particles?

\Rightarrow never been in thermal equilibrium!

"Wimpzillas" $\Rightarrow \chi \sim 0.2$ $\Rightarrow \frac{M_{Ax}}{M_{max}} = 2.5 + \frac{1}{2} \cdot \ln \left(\frac{M_{Ax}}{\langle 0 \rangle}\right)$ (production)

\Rightarrow "fine-tuning" problem