Applications of Machine Learning in Experimental Particle Physics

James Catmore
University of Oslo
• Review of basic machine learning concepts
• Boosted Decision Trees in detail
 ▸ and why I think they are awesome
• Neural networks
• Future opportunities and challenges
What is “Machine Learning”?

- We used to call it “multivariate analysis”
- The media often call it “artificial intelligence” or A.I.

Machine learning uses statistical inference to extract generalities from “training” data
→ “learns” from the training data
→ when exposed to new data, demonstrates behaviours that have not been explicitly programmed
Supervised learning

Most physics analyses
Unsupervised learning

Cluster-finding (calorimeter and inner tracker)
Reinforcement learning

No current use in physics (to my knowledge)
Objective function

• All machine learning algorithms are attempting to minimise an objective function:

\[J(\Theta) = L(\Theta) + \Omega(\Theta) \]

Loss function:
how far away from the target?

Regularisation:
how complex is the model?

\[L(\Theta) = L(\theta_0, \theta_1, \ldots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} \left(h(x^{(i)}) - y^{(i)} \right)^2 \]

Model parameters:
these are what we change during training

Mean squared error

Model

Training data

Target
Method of Steepest Descent (a.k.a. Gradient Descent)

e.g. Minuit...
How supervised machine learning works

• Assume there is some data generating process that we wish to understand and/or whose behaviour we wish to be able to predict

<table>
<thead>
<tr>
<th>var 1</th>
<th>var 2</th>
<th>…</th>
<th>var M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#</td>
<td>…</td>
<td>#</td>
</tr>
<tr>
<td>2</td>
<td>#</td>
<td>…</td>
<td>#</td>
</tr>
<tr>
<td>3</td>
<td>#</td>
<td>…</td>
<td>#</td>
</tr>
<tr>
<td>4</td>
<td>#</td>
<td>…</td>
<td>#</td>
</tr>
<tr>
<td>5</td>
<td>#</td>
<td>…</td>
<td>#</td>
</tr>
<tr>
<td>6</td>
<td>#</td>
<td>…</td>
<td>#</td>
</tr>
<tr>
<td>7</td>
<td>#</td>
<td>…</td>
<td>#</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>N</td>
<td>#</td>
<td>…</td>
<td>#</td>
</tr>
</tbody>
</table>

• Assume also that we are able to somehow label some of the data being produced…

PREPROCESSING

also… data preparation…

tabulation… feature extraction…

Labelling examples

CLASSIFICATION

“A”
“V”

REGRESSION

NOK 8 600 000
NOK 15 200 000

“Signal”
“Background”
How supervised machine learning works

- Suppose that we collect and (somehow) label a batch of data from the generating process

<table>
<thead>
<tr>
<th></th>
<th>var 1</th>
<th>var 2</th>
<th>...</th>
<th>var M</th>
<th>LABEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>2</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>3</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>4</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>5</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>6</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>7</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>

- Let us split this sample into three pieces

Training sample

Validation sample

Evaluation sample
How supervised machine learning works

1. TRAINING

2. ALGORITHM

3. Hyperparameters
How supervised machine learning works

Comparison between the prediction and labels allows a determination of the algorithm performance

Hyperparameters can be adjusted and the training repeated
How supervised machine learning works

HYPERPARAMETER TUNING

Shuffle (cross validation)

Training sample

Train

Validate

Adjust

Validation sample
How supervised machine learning works

PERFORMANCE EVALUATION

<table>
<thead>
<tr>
<th>var 1</th>
<th>var 2</th>
<th>...</th>
<th>var M</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
</tr>
</tbody>
</table>

No further adjustments permitted without fresh training data.
The performance as evaluated in this step is assumed to be the working performance of the algorithm.
How supervised machine learning works

DEPLOYMENT

The predictions are now used for practical purposes

<table>
<thead>
<tr>
<th>var 1</th>
<th>var 2</th>
<th>...</th>
<th>var M</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>X</td>
<td>#</td>
<td>...</td>
<td>#</td>
</tr>
</tbody>
</table>

New unlabelled data
Projection to a single variable

The algorithm learns how to project M variables into a single variable

$$f(x_1, x_2, \ldots, x_M) = y$$
Physics analysis: “rectangular cuts”
Physics analysis: “rectangular cuts”
Physics analysis: multi-variate (ML)

Boundary defined by a machine learning algorithm
Physics analysis: multi-variate (ML)

variable 1

variable 2

New ML variable

2D→1D transformation
Physics analysis: multi-variate (ML)
Performance evaluation: Receiver-Operator Curve

The diagram illustrates the Receiver-Operator Curve (ROC) with the following categories:

- TP (True Positive)
- FP (False Positive)
- FN (False Negative)
- TN (True Negative)

The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings for a binary classifier. The area under the curve (AUC) is a measure of the classifier's ability to distinguish between classes.

© Wikipedia
Deep Networks

Results

Lo + hi = lo.

Conclude:
DN can find hi-level vars.
Hi-level vars do not have all info are unnecessary.

14

No better than random
Overfitting and bias vs variance

Underfitted: model is too simple (high bias, low variance)

Degree 1
MSE = 4.08e-01 (+/- 4.25e-01)

Degree 4
MSE = 4.32e-02 (+/- 7.08e-02)

Degree 15
MSE = 1.83e+08 (+/- 5.48e+08)

Overfitted: model is too complex (low bias, high variance)

\[J(\Theta) = L(\Theta) + \Omega(\Theta) \]

Regularisation is the means of avoiding overtraining: imposes a penalty for complexity
Overfitting and bias vs variance

Error

Number of cycles

Validation dataset

Training dataset

Underfitting

Overfitting

STOP
Exemplary achievements of multivariate techniques in HEP

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top quark mass measurement @ Tevatron</td>
<td>Shallow NNs, BDTs</td>
</tr>
<tr>
<td>Single top quark discovery @ Tevatron</td>
<td>Shallow NNs, BDTs</td>
</tr>
<tr>
<td>Higgs discovery (H→γγ) @ CMS</td>
<td>BDT</td>
</tr>
<tr>
<td>Observation of H→bb @ ATLAS, CMS</td>
<td>BDT</td>
</tr>
<tr>
<td>Observation of Bs→μμ @ ATLAS, CMS, LHCb</td>
<td>BDT</td>
</tr>
<tr>
<td>Observation of associated Higgs and top quark pair production (“ttH”) @ ATLAS, CMS</td>
<td>BDT (XGBoost @ ATLAS)</td>
</tr>
<tr>
<td>Jet flavour tagging</td>
<td>Boosted decision trees (BDT), shallow neural networks (NN), recurrent NN</td>
</tr>
</tbody>
</table>
Software commonly used in HEP

<table>
<thead>
<tr>
<th>Package</th>
<th>Description</th>
<th>Data structure</th>
<th>ROOT integration?</th>
<th>Download from…</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMVA</td>
<td>ML framework + algorithms</td>
<td>ROOT TTrees</td>
<td>Yes</td>
<td>Ships with ROOT (root.cern)</td>
</tr>
<tr>
<td>SciKitLearn</td>
<td>ML framework + algorithms</td>
<td>NumPy arrays / Pandas dataframe</td>
<td>Via pyROOT</td>
<td>http://scikit-learn.org or via Anaconda</td>
</tr>
<tr>
<td>Keras</td>
<td>Wrapper for NNs - TensorFlow and Theano</td>
<td>NumPy arrays & Pandas dataframe</td>
<td>Via pyROOT</td>
<td>https://keras.io or via Anaconda</td>
</tr>
</tbody>
</table>

- The **frameworks** offer tools for making performance plots, organising data, cross validation etc.
 - They have built-in algs but these may not be the best for a given task - be prepared to plug in external applications from outside our community
- Divide between the ROOT and Python ecosystems becomes less important as Python-driven ROOT becomes more advanced
 - **Uproot**: convert ROOT files to Pandas dataframes without a ROOT installation
- If you are using the Python ecosystem, use **Anaconda** rather than installing each package independently
- Data structures are a fascinating topic by themselves - in particular our use of “ragged arrays” is bizarrely rare in the wider world. See (e.g.) this talk at CHEP2018
• 3rd annual meeting: agenda

• Wide variety of topics reflecting the growing interest in machine learning in our field

• A few particular highlights (my choice)

 ‣ Conceptual overview of ML in HEP (S. Gleyzer)

 ‣ Statistical and information theory foundation of deep learning (N. Tishby)

 ‣ Future directions for HEP (K. Cranmer)

 ‣ Handling uncertainties with adversarial training (P. Galler)

 ‣ Decoding physics information from deep NNs (T. Cheng)

 ‣ Tracking machine learning challenge (D. Rousseau)

 ‣ Containers and machine learning (M. Feickert)
Open data portal

- For those of us in an experiment there is no shortage of data and simulation to play with
- But getting it into a reasonable shape can be a lot of work
- Those who are not members of a big experiment may struggle to get enough data to try out their new ideas
- Solution: Open Data Portal - http://opendata.cern.ch
 - More than 1 PB of data and simulation for the general public to explore
 - Ideal for educational purposes as well!
- Examples in this talk prepared with the HiggsML challenge dataset:
 - http://opendata.cern.ch/record/328
 - Jupyter notebooks (prepared jointly with Eirik Gramstad for training new students in Oslo) - specifically BDT tutorial
Boosted Decision Trees
Consider some labelled multi-variate data in two categories, signal and background

To build a decision tree:

1. Cut the data using the variable that best separates the signal from background
2 Repeat with the two separated portions of data

3 Continue until the separation between S and B reaches the required level
Use the trained tree (= cuts set) to separate unlabelled data

<table>
<thead>
<tr>
<th></th>
<th>var 1</th>
<th>var 2</th>
<th>...</th>
<th>var M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
</tr>
<tr>
<td>2</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
</tr>
<tr>
<td>3</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
</tr>
<tr>
<td>4</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>#</td>
<td>#</td>
<td>...</td>
<td>#</td>
</tr>
</tbody>
</table>

Decision tree:

- **var17 > X**
 - **var10 > Y**
 - **var3 > Z**
 - **var10 < Y**
 - **var3 < Z**
- **var17 < X**
 - **var10 > Y**
 - **var3 > Z**
 - **var10 < Y**
 - **var3 < Z**
Decision trees

• Advantages
 ‣ Variable scaling/normalisation not required
 ‣ Very straightforward to use (and explain)
 ‣ Can directly visualise how the training has proceeded (“transparent box”)
 ‣ Able to handle numerical and categorical variables, multi-classes and run classification/regression without much change to the algorithm

• Disadvantages
 ‣ Susceptible to learn from random fluctuations (over-training)
 ‣ Unstable and fragile: small variations in the training data can lead to completely different trees being formed
 ‣ Unbalanced classes may lead to skewed trees
• **Boosting** is based on the concept that an *ensemble of weak learners* can be statistically combined to produce much stronger predictions

 ‣ Weak = only slightly better than 50:50 guess

 ‣ Not restricted to decision trees

• Enables us to preserve many of the advantages of decision trees whilst avoiding some of their pitfalls

• Many different ways of boosting - we’ll look at two that are heavily used in HEP

 ‣ Adaptive boosting - AdaBoost

 ‣ Gradient boosting - XGBoost
In all cases we seek an ensemble of trees T that minimises the value of some objective function on the training data, with each new tree trying to correct the mistakes of its predecessors.

The means by which the new tree is added distinguishes the different boosting methods.
Basic idea: when building the ensemble of decision trees, previously misclassified events are **upweighted** for the next tree.

\[x = \{ w_1x_1, \ldots, w_Nx_N \}; \quad y = \{ y_1, \ldots, y_N \}, \quad y \in \{-1,1\} \]

Weighted data

Target

\[\{ w_{1,1}, \ldots, w_{N,1} \} = \{ \frac{1}{N}, \ldots, \frac{1}{N} \} \]

Initial event weights
Let us build an ensemble T of M decision trees:

For m in $1, \ldots, M$:

$$h_m(x) \quad \text{mth tree built as per recipe on previous slides}$$

$$\epsilon_m = \left(\sum_{i=0}^{n} w_i^{(m)} : h_m(x_i) \neq y_i \right) / \sum_{i=0}^{n} w_i^{(m)}$$

Error: sum of weights for misclassified events / total

Append the mth tree to the ensemble:

$$T(x) = T(x) + \alpha_m h_m(x) \quad \text{where} \quad \alpha_m = \frac{1}{2} \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right)$$

Update the weights:

$$w_{i,m+1} = w_{i,m} e^{-y_i \alpha_m h_m(x_i)}$$

Observe that wrongly classified events are upweighted and correctly classified events are downweighted.

T is used to evaluate new data.
\[\alpha_m = \frac{1}{2} \ln \left(\frac{1 - \epsilon_m}{\epsilon_m} \right) \]

\(\alpha: \text{contribution per tree} \)

+ve contribution increases with decreasing error rate

No better than guessing → zero contribution

-ve contribution increases with increasing error rate
Weight update

\[W_{i,m+1} = W_{i,m} e^{-y_i \alpha_m h_m(x_i)} \]

Wrongly classified events
Correctly classified events

Tree \(m \) mostly wrong
Tree \(m \) useless
Tree \(m \) mostly right
Gradient boosting: basic idea

• Once a BDT has reached perfection:

\[T_{m+1}(x) = T_m(x) + h(x) = y \]

such that \(h(x) = y - T_m(x) \)

• These residuals are the negative gradients w.r.t. \(T(x) \) of the objective function → fit each new \(h \) to the current residuals

• Equivalent to gradient descent on the loss function
Gradient boosting: algorithm

For \(m \) in 1,...,\(M \):

\[
\begin{align*}
 r_{i,m} &= - \left[\frac{\partial J(y_i, T_{m-1}(x_i))}{\partial T_{m-1}(x_i)} \right] \\
 &\text{for } i = 0,...,n
\end{align*}
\]

Gradients

Train \(h_m \) using \(r_{i,m} \) as the event weights

Find:

\[
\gamma_m = \arg \min_\gamma \sum_{i=1}^{n} J \left(y_i, T_{m-1}(x_i) + \gamma h_m(x_i) \right)
\]

Update \(T \):

\[
T_m(x) = T_{m-1}(x) + \gamma_m h_m(x)
\]

Trained BDT: \(T_M \)
• Total number of decision trees in the ensemble
 ‣ Usually in the low 100s

• Maximum depth of the individual decision trees
 ‣ Usually around 3-6, can even be 1 (e.g. one partition per cycle)

• Learning rate (if less than 1, shrinks the contribution of each new classifier)
 ‣ Means of regularisation - avoiding over-fitting

• Minimum number of events in a leaf (e.g. threshold at which a split is made)
 ‣ Often no minimum, e.g. it is 1

• Criterion by which nodes are split

• Objective function

• Evaluation method

Interesting side-note: not so common to hear discussion of these hyperparameters in physics analyses - does everyone just use the defaults?
• Extreme Gradient Boosting - documentation

• Implementation of gradient boosted decision trees

• Well-known for winning the HiggsML challenge

• Versions exist for Python (incl. Anaconda), R, C++ and TMVA (via the R interface)

• Key features
 ‣ Heavily optimised, leading to fast performance
 ‣ Built-in support for multi-threaded training and distributed training
 ‣ Automated handling of missing variables (very useful, e.g. jet p_T when there are no jets…)
 ‣ Feature importance analysis and tree visualisation
Linear discriminant: linearly separable clusters

Linear discriminant (Fisher)

No need for anything fancy
Linear discriminant: concentric circles

L.D. doesn’t work at all as expected
BDT on concentric circles

1 tree, depth=2

50 trees, depth=2

(Note: single tree with depth 6 can achieve the same without boosting)
XGBoost demo: HiggsML

- http://opendata.cern.ch/record/328
- Signal: $H \rightarrow \tau \tau$; background: $Z \rightarrow \tau \tau$, ttbar, $W \rightarrow$ leptons
- 818238 events available in total
- Out of the box test (no hyperparameter tuning)
- Download dataset (CSV) from the OpenData portal
- Use all available variables
- In the Jupyter notebook advertised earlier
 - Use Pandas to digest the CSV
 - Split into NumPy arrays: 100K training events and 100K evaluation events (each with half signal, half data)
 - Train XGBoost, with the following hyperparameters:
 - 120 trees, max depth = 6, learning rate = 0.3
DER_mass_MMC: The estimated mass m_H of the Higgs boson candidate, obtained through a probabilistic phase space integration.
DER_mass_transverse_met_lep: The transverse mass between the missing transverse energy and the lepton.
DER_mass_vis: The invariant mass of the hadronic tau and the lepton.
DER_pt_h: The modulus of the vector sum of the transverse momentum of the hadronic tau, the lepton and the missing transverse energy vector.
DER_deltaeta_jet_jet: The absolute value of the pseudorapidity separation between the two jets (undefined if PRI_jet_num ≤ 1).
DER_mass_jet_jet: The invariant mass of the two jets (undefined if PRI_jet_num ≤ 1).
DER_prodeta_jet_jet: The product of the pseudorapidities of the two jets (undefined if PRI_jet_num ≤ 1).
DER_deltar_tau_lep: The R separation between the hadronic tau and the lepton.
DER_pt_tot: The modulus of the vector sum of the missing transverse momenta and the transverse momenta of the hadronic tau, the lepton, the leading jet (if PRI_jet_num ≥ 1) and the subleading jet (if PRI_jet_num = 2) (but not of any additional jets).
DER_sum_pt: The sum of the moduli of the transverse momenta of the hadronic tau, the lepton, the leading jet (if PRI_jet_num ≥ 1) and the subleading jet (if PRI_jet_num = 2) and the other jets (if PRI_jet_num = 3).
DER_pt_ratio_lep_tau: The ratio of the transverse momenta of the lepton and the hadronic tau.
DER_met_phi_central: The centrality of the azimuthal angle of the missing transverse energy vector w.r.t. the hadronic tau and the lepton.
DER_lep_eta_central: The centrality of the pseudorapidity of the lepton w.r.t. the two jets (undefined if PRI_jet_num ≤ 1).
PRI_tau_pt: The transverse momentum $\sqrt{p_T^2 + p_y^2}$ of the hadronic tau.
PRI_tau_eta: The pseudorapidity η of the hadronic tau.
PRI_tau_phi: The azimuth angle ϕ of the hadronic tau.
PRI_lep_pt: The transverse momentum $\sqrt{p_T^2 + p_y^2}$ of the lepton (electron or muon).
PRI_lep_eta: The pseudorapidity η of the lepton.
PRI_lep_phi: The azimuth angle ϕ of the lepton.
PRI_met: The missing transverse energy E_T^miss.
PRI_met_phi: The azimuth angle ϕ of the missing transverse energy.
PRI_met_sumet: The total transverse energy in the detector.
PRI_jet_num: The number of jets (integer with value of 0, 1, 2 or 3; possible larger values have been capped at 3).
PRI_jet_leading_pt: The transverse momentum $\sqrt{p_T^2 + p_y^2}$ of the leading jet, that is the jet with largest transverse momentum (undefined if PRI_jet_num = 0).
PRI_jet_leading_eta: The pseudorapidity η of the leading jet (undefined if PRI_jet_num = 0).
PRI_jet_leading_phi: The azimuth angle ϕ of the leading jet (undefined if PRI_jet_num = 0).
PRI_jet_subleading_pt: The transverse momentum $\sqrt{p_T^2 + p_y^2}$ of the leading jet, that is, the jet with second largest transverse momentum (undefined if PRI_jet_num ≤ 1).
PRI_jet_subleading_eta: The pseudorapidity η of the subleading jet (undefined if PRI_jet_num ≤ 1).
PRI_jet_subleading_phi: The azimuth angle ϕ of the subleading jet (undefined if PRI_jet_num ≤ 1).
PRI_jet_all_pt: The scalar sum of the transverse momentum of all the jets of the events.
Weight: The event weight w_i.
Label: The event label (string) $y_i \in \{s, b\}$ (s for signal, b for background).
XGBoost demo: HiggsML

XGBoost output, HiggsML dataset

ROC for xgBoost on HiggsML dataset
• The more often a variable is used to split the data, the more important (discriminating) it is

• Enables creation of plots like this:

Note that BDTs aren’t perturbed by under-utilised variables - they just don’t use them to cut the data
Performance - training time (on my 4 core laptop)

Training time (in seconds):

- 1 thread: 220 seconds
- 2 threads: 165 seconds
- 4 threads: 110 seconds
- 16 threads: 55 seconds

Comparison of SKL and XGBoost

Number of threads:

- 1 thread
- 2 threads
- 4 threads
- 16 threads
Remarks on BDTs

• Most analyses use the TMVA BDT, but should also try XGBoost
 ‣ SKL BDTs seem to be less optimised than either
• Do we need to spend more time optimising the hyperparameters?
• In particular
 ‣ those related to the internals of the trees rather than the boosting, e.g. leaf splitting criteria and means of evaluation
 ‣ objective function
• Not clear that there is any benefit to using shallow neural networks over BDTs
• BDTs are highly performant (especially XGBoost), intuitive, robust (especially against missing variables), require modest computing power, and are well suited to physics analysis where the data is labelled
Neural networks
Artificial neural networks

• First conceived of in the 1940s-1950s, inspired by research into biological neural processes

• Key developments:
 ‣ Perceptron (1958)
 ‣ Back-propagation (1975)

• Initial development was slow due to limited computing power and insufficient training data; many machine learning researchers lost interest and focused on other techniques such as support vector machines and linear methods

• In the past 15 years several factors combined to completely change the situation
 ‣ Growth of the internet and smart phones = massively more training data and network capacity
 ‣ Huge increase in computing power and memory
 ‣ New ideas from the academic community, spread via open source software

• This led to the astonishing capabilities of deep learning that we see today
The perceptron model

INPUTS

-1

WEIGHTS

w_0
w_1
w_2
w_n

X_1

X_2

X_n

SUM

ACTIVATION

\[\sum f(\sum) \]

OUTPUT

LINEAR MODEL
The perceptron model: how it learns

\[\mathbf{x} = \{x_1, \ldots, x_M\}; \mathbf{y} = \{y_1, \ldots, y_M\} \] \text{Training data}

\[\text{M events with N variables} \]

At each step \(t \): evaluate for each event \(j \):

\[y_j(t) = f \left[w_0(t) + w_1(t)x_{j,1} + w_2(t)x_{j,2} + \ldots + w_N(t)x_{j,N} \right] \]

For each variable \(i \) from 1 to \(N \), update the weights:

\[w_i(t + 1) = w_i(t) + r \cdot \left(y_j - y_j(t) \right) x_{j,i} \]

Learning rate

Continue until

\[\frac{1}{M} \sum_{j=0}^{M} |y_j - y_j(t)| \]

reaches some appropriate level, or the number of steps \(t \) exceeds some value
Multi-layer perceptrons

NON-LINEAR MODEL

Input

Hidden

Output

Shallow

Deep
Back propagation

• The perceptron learning mechanism doesn’t extend to multiple layers

• Instead *back propagation* is used to update the weights (which may number millions in a very deep network)

• Basic idea:

 ‣ Pass each event through the network (feed forward) arriving at a result

 ‣ Compare with the target using some loss function, arriving at some error

 ‣ Propagate this error backwards through the network, node by node and layer by layer, until each neuron has its own contribution to the overall error

 ‣ Use these errors to calculate the partial derivatives of the loss function w.r.t. the weight at each neuron (*gradients*), by applying the chain rule for derivatives

 ‣ Use gradient descent to minimise the loss, which it does by updating the weights

 ‣ New examples are then passed through the trained network (fixed weights)
• An *epoch* is a **single pass through all of the training data**

 ▸ Training over 100 epochs means the networks sees the training data, in full, 100 times

• In *stochastic training* each new event leads to a weight update \rightarrow noisier so less likely to fall into local minima during minimization

• In *batch training* weights are only updated after a large number of events have been fed forwards, with the errors accumulating \rightarrow faster

• *Mini-batch training* is a compromise between the two, with small batches being selected at random from the full sample
Deep learning

- Deep neural networks have a much larger parameter space and, given enough training data, can model more complex behaviour than a shallow network or a BDT.

- Deep neural networks are inherently suited to vectorisation and co-processors → allow use of GPUs or dedicated hardware.

Deep learning allows us to extract the maximum possible value from large datasets.
Deep Networks

Results

Lo+hi = lo.

Conclude:

DN can find

Hi-level vars
do not have all info
are unnecessary

Does better without our help…

Amir Farbin

Can we gain physics insights by decoding the DNN? “Learning from the learning”?
Two particular deep learning challenges

• Vanishing gradient problem
 ▸ With so many nodes the gradients can tend to zero leading to a breakdown in the training
 ▸ Partly solved by use of rectifier activation functions, e.g. ReLU, rather than sigmoid or tanh (etc)
 ▸ Use of sign of the gradients only, etc

• Overtraining
 ▸ Very easy for deep NNs to train on random fluctuations due to their high capacity
 ▸ Solving this has required many innovations in regularisation for neural networks
 • Dropout, weight decay, early stopping, data augmentation, momentum…
Recurrent neural networks

- Different architecture with loops in the structure
 - The loops allow information to persist
 - Each additional input adds a new variant of the network to a chain (directed graph)
 - This allows processing of time varying sequences of information: breaks the mould that there must be a fixed size vector for all inputs and outputs - obvious use cases include
 - Natural language processing, machine translation, speech and music recognition
 - In our field - **flavour tagging** with the time varying sequence being the tracks in a jet

![An unrolled recurrent neural network.](image)
Flavour tagging with recurrent neural networks

- First steps: ATL-PHYS-PUB-2017-003
 - https://cds.cern.ch/record/2255226

Figure 2: A schematic diagram of the RNN-based flavor-tagger, showing input features, network structure, and the 4-class output of \{p_b, p_c, p_{light}, p_{\tau}\}. In training, track sequences are truncated after a maximum of 15 tracks, while in application all tracks are considered.

is fixed at $f_{c} = 0.07$, which is chosen based on the $\bar{t}t$ training sample 6. Given that τ discriminants typically combine calorimeter and vertex information $^-39, ^-40$, any meaningful comparisons with existing τ reconstruction algorithms are beyond the scope of this note. For consistency with existing b-tagging algorithms 7 the f_{τ} parameter is therefore set to $f_{\tau} = 0$, effectively ignoring p_{τ}.

Background rejection versus signal efficiency curves are produced by scanning a minimum threshold on D and computing background rejection and signal efficiency at each threshold. These curves can be found in Figure 3, for a background of light jets and a background of c-jets separately. The RNN outperforms IP3D, which is promising given the similar input variables, and given that neither of these algorithms relies on reconstructing a secondary vertex. For a b-tagging efficiency of 70% the RNN has 2.5 times the light-jet rejection and 1.2 times the c-jet rejection of IP3D. To illustrate the complementarity between IP-based and vertex-based algorithms, the secondary vertex reconstruction algorithm SV1 and the high-level algorithm MV2c10 are also shown. The limitations of secondary vertex reconstruction are clearly illustrated by the maximum efficiency of SV1: in roughly 20% of b-jets no secondary vertex can be found. Small changes to this fraction were observed to have little effect on the discriminant performance 7.

Output classes

Per-track inputs

Jet
Flavour tagging with recurrent neural networks

- Promising results
 - RNN outperforms traditional taggers
 - Orange line is for a vertexing-based tagger which is unable to tag the ~20% of events that do not have a vertex

![Graph 1](image1.png)

ATLAS Simulation Preliminary

\(\sqrt{s} = 13 \text{ TeV}, tf \)

- \(p_T > 20 \text{ GeV}, |\eta| < 2.5 \)

![Graph 2](image2.png)

ATLAS Simulation Preliminary

\(\sqrt{s} = 13 \text{ TeV}, tf \)

- \(p_T > 20 \text{ GeV}, |\eta| < 2.5 \)
Adversarial training

- Idea: two networks working in opposition to one another, with one trying to identify the mistakes of the other
 - optimal solution reached when the opponents are in equilibrium
- Usually discussed as a means of doing ultra-fast simulation (generative-adversarial networks)
 - Generative network trying to generate new events from some template dataset, with the opponent trying to distinguish the new events from those in the template datasets
- But also shown to have potential as a means of reducing the impact of systematics on physics results by decorrelating nuisance parameters
• arXiv:1703.03507v1 (Whiteson, Goul, Søgaard)

• Aims to build a neural network jet substructure tagger for discriminating boosted decay signals while remaining largely uncorrelated with the jet mass

![Diagram of adversarial training](image)

Tries to build invariant mass using only the output of the classifier

- $L_{\text{classification}}$
- $L_{\text{adversary}}$
Example of decorrelation using adversarial training

FIG. 4. Signal e

FIG. 5. Top left, relationship between jet mass and neural network output for varying jet masses. Top right, example of decorrelation using adversarial training.

FIG. 6. Distributions of jet mass after selection with adversarial network training.

FIG. 7. Distributions of jet mass after selection with adversarial network training.

FIG. 8. Distributions of jet mass after selection with adversarial network training.

The ability to discriminate jets due to the hadronic decay of a boosted object from those due to a quark or gluon is an important feature of a jet substructure analysis. Simpler background shapes are especially preferred because they allow for robust estimates that are not dependent on the assumed functional form, with parameters constrained by background-dominated sidebands to predict the discovery significance, due to the background. Thresholds on the output of the classifier network, which decorrelate the jet mass, can be modeled with fewer parameters and inflection points avoided. Mass-independence is not in itself the goal; instead, we seek reduced dependence on knowledge of jet mass.

In practice, experimentalists use an as-simplified as possible jet substructure analysis. But a quantitative assessment is more difficult. Mass-independence is not in itself the goal; instead, we seek reduced dependence on knowledge of jet mass. But a quantitative assessment is more difficult. Mass-independence is not in itself the goal; instead, we seek reduced dependence on knowledge of jet mass.
Deep neural networks and GPUs

CPU:
- general purpose, higher precision;
- faster clock speed → power hungry → few

• Underlying silicon transistor technology is the same

• GPUs are optimised for graphics manipulation
 ‣ simple low precision calculations carried out repeatedly over a very large data space (e.g. the pixels on a screen) → massive parallelism
 ‣ they do not work well with branchy, interdependent code requiring high precision (e.g. HEP software)
 ‣ perfectly suited to back propagation and minimisation for deep learning training

GPU:
- optimised for graphics manipulation, lower precision;
- slower clock speed → power efficient → many

• GPUs are becoming a more important component of high performance computers used in research, especially in the US
Deep neural networks and GPUs

• Graph-computation tools such as Tensorflow are GPU-ready

• Is deep learning the key to unlocking the power of accelerators for HEP?
 ‣ Detector simulation with generative-adversarial techniques and auto-encoders
 ‣ Pattern recognition for tracking
 ‣ Image techniques for jet reconstruction?

• How much of our data processing can we sub-contract to deep learning?
 ‣ Note that Tensorflow can also be used for non-ML computations: possibility for event generation?

• This will be the main question we have to address before HL-LHC…
Backup slides
Convolutional neural networks

- Special architecture which explicitly assumes the inputs are images
 - Massively reduces the number of neurons needed to do image recognition
- Main difference: different layers have different behaviours
 - Each layer is “3D”, that is as well as the pixel position there is also a depth (colour or level of grey)
 - Convolution filter slides over small areas of the image to build a “feature map”
We hide the alignments of low-scoring words to reduce clutter. We assign each region an arbitrary color. We first verify that our multimodal RNN is rich enough to support sentence generation for full images. In this experiment, we trained the RNN to generate sentences on full images from Flickr8K, Flickr30K, and MSCOCO datasets. Then at test time, we use the first four out of five sentences as references and the fifth one to evaluate human agreement. We also compare to a ranking baseline which uses the best model from the previous section (Section 4.1) to annotate each test image with the highest-scoring sentence from the training set. The quantitative results of this experiment are in Table 2. Note that the RNN model confidently outperforms the retrieval method. This result is especially interesting in MSCOCO dataset, since its training set consists of more than 600,000 sentences that cover a large variety of descriptions. Additionally, compared to the retrieval baseline which compares each image to all sentences in the training set, the RNN takes a fraction of a second to evaluate.
Open questions

• Issues surrounding training:
 ‣ When is it appropriate to use different training schemes, e.g. n-fold cross validation versus a simple three-way split, etc
 ‣ What is the correct way to deal with very rare backgrounds in the training, where a cross-section corrected weighting will give a handful of events only (e.g. triboson and Higgs backgrounds)

• Dealing with unbalanced samples - comparisons of different ML algorithms are often shown based on equally sized “signal” and “background” samples, but in real life one usually has much more of the latter than the former. How should this be dealt with in the training? Do we need to reconsider the statistics we request for signal processes (see the next point)

• Strategy for MC production requests when use of machine learning is planned

• Hyperparameter tuning - what is recommended here? Grid searches, random searches etc?

• Variable selection - what is the best way of choosing which variables to keep and which to drop? One-at-a-time? BDT/NN variable importance measures? Studying the variation of the output w.r.t. each variable? Etc. What is the role of “really understanding/reproducing” variables in order that they play a decisive/important role?

• Dealing with variables that are undefined for some events - quite often one will encounter “-999” etc in an n-tuple for cases where the variables isn’t defined, e.g. “pT of the 5th jet” etc. What should one do with these cases? Some machine learning literature advocates replacing them with random noise or the mean of the other variables in the column, but this doesn’t seem appropriate for our field. One could transform them to categorical variables that are always defined?

• Memory issues - I guess this differs from case to case, but quite often one has a very large dataset that it isn’t practical to load into memory at once. Some algorithms are more amenable to training in batches than others (easy for neural networks but less obvious for ensemble methods like BDTs).