Data Preparation in ATLAS
Introduction

• Will try to give an introduction to the area we call data preparation, where I am currently the deputy coordinator.
 - Will take the opportunity to also discuss other things that are tangential, and which can be interesting to understand.
 - Aimed at Ph. D. students and non-ATLAS members, so some of you will find a lot of material familiar.

• The ATLAS collaboration consists of over 3000 physicists, from institutes all over the world.
 - Over 1000 of them are Ph. D. students.
 - Some are stationed at CERN, most are not.
Introduction

- In such a big collaboration, the work needs to be organised.
 - Most of what happens in ATLAS is divided into five “Activities”, which (if you are a ATLAS member) you recognise from our home page where they are the big buttons at the top.
 - In general terms, data preparation is what happens to the data after it leaves the detector and before it is used in physics analysis.
 - It acts a little as a middle layer between detector, trigger and computing, and the physics activity.
Introduction

• The tasks of the data preparation group includes the data quality assessment, both online and offline, the reconstruction of the data, the low-level calibration, the luminosity and so on.

- Before explaining some of these efforts, I would like to start by giving some background to why we create such massive datasets.
The potential of an accelerator is determined by two factors:

- The *collision energy*, which determines how heavy particles can be that are created in the collisions, and influences the probabilities (cross sections) for interesting things to happen.

- The *luminosity*, which is a measure of “how many” collisions the accelerator delivers, per unit of time or integrated over some time period.

- The LHC is the highest energy accelerator ever, but it is also (I think) the highest luminosity accelerator ever.
- Generates large dataset.
Collision Rate

• To reach the highest intensity of collisions, the protons in the LHC are accelerated in bunches of about 10^{11} protons each.
 - The beams are brought into collision at the 8 interaction points.

• At an energy of 6.5 TeV, the speed of the protons is 0.999997828 c. The spacing between two bunches is 25 ns.
 - The distance between bunches is $3 \cdot 10^8 \times 2.5 \cdot 10^{-8} = 7.5$ meters.
 - Given that the ring is 27 km long, a maximum of about 3600 bunches fit.
 - In reality that number is slightly smaller, we aim for about 2400 bunches per beam this year.

• 25 ns means 40 MHz collisions!
Multiple Interactions

• Other measures that can be taken to increase the luminosity, besides increasing the collision rate, are for example:
 - Increasing the number of protons in each bunch.
 - Making sure that the bunches are tightly squeezed in space.

• As a result each time two proton bunches collide, several p-p pairs can interact with each other.
 - Here you see a zoom to the interaction region, and the reconstructed charged particles in an event. 7 collisions seen.
 - Such simultaneous interactions are called pile-up, measured by μ.
 - This year μ will be around 30.
CMS Simulation: 300 GeV H→ZZ→eeμμ at various luminosities
Why the High Collision Rate?

- Production of new and heavy particles happen rarely when two protons collide at the LHC.
 - E.g. the discovery of the Higgs boson was one of the main goals.
 - Only one out of ten billion pp collisions create a Higgs boson.
 - 40 MHz times 30 interactions times 10^{-10} gives ~ 1 Higgs per 10 s.
 - Then only a fraction of the Higgs boson decays can be found amongst the large backgrounds.
- New BSM particles will be created even less often than the Higgs.
• Cannot resist showing one slide on the measured σ too…

Suspect Model Total Production Cross Section Measurements

<table>
<thead>
<tr>
<th>Theory</th>
<th>LHC pp $\sqrt{s} = 7$ TeV</th>
<th>LHC pp $\sqrt{s} = 8$ TeV</th>
<th>LHC pp $\sqrt{s} = 13$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data 4.5 - 4.9 fb(^{-1})</td>
<td>Data 20.3 fb(^{-1})</td>
<td>Data 85 fb(^{-1})</td>
<td></td>
</tr>
</tbody>
</table>

Measured Cross Sections
Data Size

• So we need a lot of collisions to create a statistically significant sample of Higgs bosons, or eventual new BSM particles.

• The RAW data contains all the hits from the detector.
 - A hit typically means an energy measurement from a passing particle, and an identifier for the detector channel.
 - The ATLAS detector has about 100 million readout channels.

• Even if we are not reading out empty detector channels in the RAW data, the size is still about 1.5 MB per event.
 - 40 MHz times 1.5 MB is 60 TB of data per second! Even if we could handle 60 TB/s data flow, we cannot afford the disk to store that much data. Disk cost is actually the limiting factor.
 - The budget, and our computing resources, are sized such that we should be able to cope with a 1 kHz readout rate to disk.
The ATLAS Trigger

- The selection from 40 MHz to 1 kHz is done by the trigger.
 - Filters out interesting event for storage and offline analysis.

- The trigger system in ATLAS is divided into two levels:
 - Level 1, fast electronic inside the detector cavern, selects one event out of ~ 400, reduces rate from 40 MHz $\rightarrow 100$ kHz.
 - The High-Level Trigger (HLT), fast reconstruction of the whole event on dedicated computer farm. Reduces rate to targeted 1 kHz.

- The trigger selects on things like presence of muons, electrons or high-momentum jets.
 - The first stage (selection) in any physics analysis.
• Since 25 ns is much too short to make any kind of decision, the data has to be buffered in pipelines and processed in parallel.
 - Gives the L1 trigger system about 2.5 μs to make a decision. If an event passes, it is sent along to the HLT.
 - HLT is a massive networked computer farm, parallel processing of events allows for a couple of seconds to make a decision.
 - If an event passes the HLT trigger it is sent off for storage and offline reconstruction at another computer farm.
The ATLAS Trigger

[Diagram of the ATLAS Trigger system]

Jonas Strandberg

Data Preparation in ATLAS

Science Coffee, Lund, April 7, 2016.
What if Something is Missed?

- So we are limited to 1 kHz output rate for offline analysis:
 - To reach that we only save one part in forty thousand.
 - Aren’t we worried that we throw away some interesting events?
- If we would record every event, we would get one Higgs boson every 116 days instead of one every 10 seconds!
 - We wouldn’t be able to find the rare physics processes.
- We do save some small fraction of events that are “unbiased”.
 - For example, we can devote 1 or 2 Hz of bandwidth to events that are just passed through the trigger, randomly sampled.
- A lot of the work with the trigger is deciding how to divide the available 1 kHz bandwidth among the different signatures.
 - E.g. 100 Hz electron triggers, 100 Hz muon triggers …
Data Streams

• For ease of use, the trigger can also place events that are saved offline in different data streams, I will mention three here:
 - The *main* physics stream (called physics_Main) which collects the events for almost all physics analyses.
 - The *express* stream, which is a sampling of events of all types from the Main stream, typically about 2% of the events.
 - There are many other types of streams, for calibration, for checking the integrity of the detector and for special analyses. One example of the latter is the data scouting stream.
• When a data taking run is over (typically about 8 hours of data taking), the reconstruction of the express stream starts.
 - The reconstruction happens at the so called Tier-0 data centre.
 - Configuring the reconstruction, and following up on the jobs, is handled by the Prompt Reconstruction Operations Coordinators (PROCs), and the Tier-0 team.
After the reconstruction of the express stream, several activities commence on the express stream output:

- Histograms of various reconstructed quantities are uploaded to a web server, where the quality of the data can be assessed.
- If needed, a new alignment of the innermost tracker is derived.
- The beamspot is determined (with the new alignment).
• All these activities are collectively called the calibration loop, and the time-frame allocated to this is 48 hours.

 - Special data formats for checking e.g. the noise in the detector are produced, and experts create maps of noisy modules.

• After the calibration loop has finished, the so called *bulk* reconstruction starts, on the Main stream.

 - Small detector defects (noisy modules for example) identified in the calibration loop are masked in the bulk reconstruction.
Calibration Loop

Point 1

Express Processing

Reduced physics output
- AOD
- TAG

Calibration & DQ output
- ESD
- HIST

New calibration

Export

Express stream

Physic streams

RAW Merging

Export

36h Delay

Bulk Processing

Export

Many DESDs
Data Quality

• The Data Quality group checks the histograms produced in the express stream processing and helps identify problems.

• In the bulk reconstruction, an additional set of histograms are produced with the full statistics of the main stream.
 - This includes high-level quantities such as particle masses and other things that need the full statistics to be monitored.
 - A report is made by each (sub-)detector community in ATLAS, as well as by the combined performance group contacts.

<table>
<thead>
<tr>
<th>ATLAS pp 25ns run: August-November 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Tracker</td>
</tr>
<tr>
<td>Pixel</td>
</tr>
<tr>
<td>93.5</td>
</tr>
</tbody>
</table>

All Good for physics: 87.1% (3.2 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at √s=13 TeV between August-November 2015, corresponding to an integrated luminosity of 3.7 fb⁻¹. The lower DQ efficiency in the Pixel detector is due to the IBL being turned off for two runs, corresponding to 0.2 fb⁻¹. Analyses that don’t rely on the IBL can use those runs and thus use 3.4 fb⁻¹ with a corresponding DQ efficiency of 93.1%.
Good Runs List

- The lowest granularity of data which can be flagged as good or bad is one luminosity block, corresponding to \(\sim 60 \) s of data.
 - The bulk reconstruction is used to flag data which is unusable for physics analysis because of detector or reconstruction issues.
 - The full set of good/bad decisions is called a Good Runs List (GRL). Every analysis has to apply a GRL to their dataset.

- Once you have the list of luminosity blocks (LB) that are used in the analysis, you also need to know the luminosity per LB.
 - The instantaneous luminosity varies during the run, we consider it to be constant on the timescale of 60 s.
 - The integral of the luminosity is calculated as a sum of LBs.
Luminosity

- The instantaneous luminosity is measured by several detectors, some which are dedicated to the luminosity measurement.
 - For example the LUCID detector.
- All luminometers are calibrated to the absolute scale in special Van-der-Meer runs, that determines the beam parameters.

\[\int L_{\text{MBTS}} \, dt = 75.6 \pm 15.1 \, \text{(stat @ syst)} \, \mu \text{b}^{-1} \]

\[\mu_{\text{vis}} / \mu_{\eta_2} = 10^{-4} - 10^{-5} \]

\[\Delta X [\text{mm}] \]
Luminosity 2015

ATLAS Preliminary

$\sqrt{s} = 13$ TeV

Total Delivered: 4.2 fb$^{-1}$

Day in 2015
Luminosity 2015

\[\sqrt{s} = 13 \text{ TeV} \]

ATLAS Preliminary

- LHC Delivered
- ATLAS Recorded

Total Delivered: 4.2 fb\(^{-1}\)
Total Recorded: 3.9 fb\(^{-1}\)

Data Preparation in ATLAS
Luminosity 2015

ATLAS Preliminary

\[\sqrt{s} = 13 \text{ TeV} \]

- LHC Delivered
- ATLAS Recorded
- All Good for Physics

Total Delivered: 4.2 fb\(^{-1}\)
Total Recorded: 3.9 fb\(^{-1}\)
All Good for Physics: 3.2 fb\(^{-1}\)
• After the Tier-0 bulk reconstruction has finished, the data gets distributed on the Grid.
 - First to the Tier-1 centres, then further on to the Tier-2 and Tier-3 centres.
 - At this point the so called *derived* data formats are produced (DAODs), which are then inputs to the various analyses.
 - Sometimes analyses also make final, small, ntuples from the DAODs.
Distributed Computing

Tier-0
- 200Hz - 400Hz
- RAW: ~1.7-1.1MB/evt
- Data Recording to tape
- First Pass Processing

Tier-1
- CERN Analysis Facility
- Calibration

Tier-1
- Event Summary Data (ESD): ~1 MB/evt
- Analysis Object Data (AOD): ~100 kB/evt
- derived data (dESD, dAOD, NTUP,...) distributed over the Grid

Tier-2
- 10 Tier-1 centers
- RAW data copy on tape
- Analysis data on disk
- Reprocessing

Tier-2
- 38 Tier-2 centers (~80 sites)
- Analysis data on disk
- User Analysis
Reprocessing

- To make analysis possible, we keep the performance of the software stable during the data taking for one year.
 - All developments are collected into the next software release.
- At the end of the year, we typically reprocess all our data.
 - Reconstruct all the RAW data again with the new release.
 - This is also an opportunity to recover some data, that were lost due to fixable problems.
- Maintaining and validating our releases is a major effort!

Luminosity blocks in a run

DQ flags before reprocessing ➔ After reprocessing, Dec-09 COOL tag

Sure, we can fit it into this Release!
Summary and Conclusions

- Data preparation is concerned with all steps necessary to go from the RAW data from the detector to physics analysis.
 - At least that is how it is supposed to work, more times than not it is more like what these people are doing: fighting fires, and trying to fix the latest thing that broke!

- The trigger, detector calibration, reconstruction and luminosity determination are things that affect all ATLAS analysis.
 - The data preparation work is the input to all our physics results.

- We are about to resume data taking soon, at a higher luminosity and with several intriguing things in data to check.
 - Another big effort this year will be preparing the next release.

Another exciting year ahead of us!
Backup
• In 2015, had to start aligning the innermost tracker every run.
 - Increased LV currents caused temperature change, cause bowing of the IBL staves. Introduce an extra ES step to correct for it.
Data Preparation Subgroups

- **Prompt Reconstruction (PROC)**
 - Magda Chelstowska, Tulay Donszelmann

- **Conditions**

- **Data Quality**
 - Rosy Nikolaidou, Anyes Taffard, Lisa Shabalina

- **Tier0 Operations**
 - Armin Nairz, Luc Goossens

- **Non-collision backgrounds**
 - Saverio D’Auria, Stephen Gibson

- **Data Preparation**
 - Susumu Oda, Monica Verducci
 - Paul Laycock, Jonas Strandberg

- **Reprocessing**
 - David South, Kostas Nikolopoulos

- **Metadata**
 - Aurelio Juste, David Malon

- **Beamspot**
 - Anthony Morley, Rainer Bartholdus

- **Luminosity**
 - Witold Kozanecki, David Salek, Vincent Hedberg

Data Preparation in ATLAS