
CERN-LCGAPP-2005-05

LU TP 05–43

July 2005
Updated edition, April 2006

A brief introduction to

PYTHIA 8.048

T. Sjöstrand

CERN/PH, CH–1211 Geneva 23, Switzerland

and

Department of Theoretical Physics, Lund University,

Sölvegatan 14A, SE–223 62 Lund, Sweden

Abstract

The Pythia program is a standard tool for the generation of high-energy col-
lisions. While previous versions were written in Fortran, Pythia 8 represents
a complete rewrite in C++. This is a project still very much under develop-
ment, and will not offer a production-run-quality replacement for some time
to come. Nevertheless, enough of the basic structure is in place that the pro-
gram can be tried out. Early feedback, e.g. on interoperability with LHC
software, could avoid problems later on. The current introduction should
provide enough details to get going with such an exploratory phase.

1 Introduction

The development of Jetset [1], containing several of the components that later were
merged with Pythia [2], was begun in 1978. Thus the current Pythia 6 generator [3] is
the product of more than a quarter of a century of development, and some of the code has
not been touched in a very long time. New options have been added, but old ones seldom
removed. The basic structure has been expanded in different directions, well beyond what
it was once intended for, making it rather cumbersome by now.

From the onset, all code has been written in Fortran 77. For the LHC era, the exper-
imental community has made the decision to move heavy computing completely to C++.
Fortran support may be poor to non-existing, and young experimenters will not be conver-
sant in Fortran any longer. Therefore it is logical to move Pythia to C++, in the process
cleaning up and modernizing various aspects.

A first attempt in this direction was the Pythia 7 project [4]. However, after the
Herwig++ [5] group decided to join in the development of a common administrative
structure, ThePEG [6], work on the physics aspects stalled.

Pythia 8 is a clean new start, to provide a successor to Pythia 6. In a return to
the traditional Pythia spirit, it is a completely standalone generator, thus not relying on
ThePEG or any other external library. Some hooks for links to other programs are already
provided, however, and others may be added. Work on Pythia 8 was begun from scratch
in September 2004, so far as a one-person effort, with a three-year “road map”.

The second public version, presented here, clearly is not yet developed enough to provide
a realistic alternative to Pythia 6. Instead it it made public to allow early feedback from
the experimental community, especially within the context of LHC software activities. It is
intended that all subversions in the 8.0xx series should be viewed as development snapshots,
with 8.100, sometime in early 2007, the first one to be taken seriously. Even so, that version
will not be a complete replacement in all respects, but strongly focused on LHC applications.

Further, with the rise of automatic matrix-element code generation and phase-space
sampling, input of process-level events via the Les Houches Accord (LHA) [7] reduces the
need to have extensive process libraries inside Pythia itself. Thus emphasis is on providing
a good description of subsequent steps of the story, involving elements such as initial- and
final-state parton showers, multiple parton–parton interactions, string fragmentation, and
decays. All the latter components now exist as C++ code, even if in a preliminary form,
with finer details to be added, and still to be better integrated and tuned. At the current
stage, however, there is only the beginning of a Pythia 8 process library; instead an
interface is provided to Pythia 6, so that essentially all hard processes available there can
be generated and sent on to Pythia 8, transparent to the user. This Fortran link is not
intended as a long-term solution, of course.

The current document provides an introduction to Pythia 8 usage. It is not an at-
tempt to compete with the Pythia 6 manual [3] in comprehensiveness, but is rather more
lightweight. Much of the physics aspects are unchanged relative to the Pythia 6 manual,
and so we refer to it and to other physics articles for that. Instead we here give an overview
for potential users who already have some experience with event generators in general, and
Pythia 6 in particular, who want to understand what is different about Pythia 8, and
how the new program should be used.

1

2 Program Structure

2.1 Program flow

The physics topics that have to come together in a complete event generator can crudely
be subdivided into three stages:

1. The generation of a “process” that decides the nature of the event. Often it would
be a “hard process”, such as gg → h0 → Z0Z0 → µ+µ−qq, that is calculated in
perturbation theory, but a priori we impose no requirement that a hard scale must
be involved. Only a very small set of partons/particles is defined at this level, so only
the main aspects of the event structure are covered.

2. The generation of all subsequent activity on the partonic level, involving initial- and
final-state radiation, multiple parton–parton interactions and the structure of beam
remnants. Much of the phenomena are under an (approximate) perturbative control,
but nonperturbative physics aspects are also important. At the end of this step,
a realistic partonic structure has been obtained, e.g. with broadened jets and an
underlying-event activity.

3. The hadronization of this parton configuration, by string fragmentation, followed by
the decays of unstable particles. This part is almost completely nonperturbative, and
so requires extensive modelling and tuning or, especially for decays, parametrizations
of existing data. It is only at the end of this step that realistic events are available,
as they could be observed by a detector.

This division of tasks is not watertight — parton distributions span and connect the two
first steps, to give one example — but it still helps to focus the discussion.

The structure of the Pythia 8 generator, as illustrated in Fig. 1, is based on this
subdivision. The main class for all user interaction is called Pythia. It calls on the three
classes ProcessLevel, PartonLevel and HadronLevel, corresponding to points 1, 2 and 3
above. Each of these, in their turn, call on further classes that perform the separate kinds
of physics tasks.

Information is flowing between the different program elements in various ways, the most
important being the event record, represented by the Event class. Actually, there are two
objects of this class, one called process, that only covers the few partons of the “hard”
process, and another called event, that covers the full story from the incoming beams to
the final hadrons.

There are also two incoming BeamParticles, that keep track of the partonic content
left in the beams after a number of interactions and initial-state radiations, and rescales
parton distributions accordingly.

Finally, a number of utilities can be used just about anywhere, for Lorentz four-vectors,
random numbers and simple histograms, for setting and getting various parameters and
particle data, and for a number of other “minor” tasks.

Orthogonally to the subdivision above, there is another, more technical classification,
whereby the user interaction with the generator occurs in three phases:

• Initialization, where the tasks to be performed are specified.

• Generation of individual events (the “event loop”).

• Finishing, where final statistics is made available.

2

The User (≈ Main Program)

Pythia

Event process Event event

ProcessLevel

ProcessContainer

SigmaHat, PhaseSpace

LHAinit, LHAevnt

(Pythia 6.3)

PartonLevel

TimeShower

SpaceShower

MultipleInteractions

BeamRemnants

HadronLevel

StringFragmentation

MiniStringFrag...

ParticleDecays

(. . . ??)

BeamParticle

Vec4, Random, Hist, Settings, ParticleData, StandardModel, ...

Figure 1: The relationship between the main classes in Pythia 8. The thick arrows show
the flow of commands to carry out different physics tasks, whereas the thinner show the
flow of information between the tasks. The bottom box contains common utilities that may
be used anywhere. Obviously the picture is strongly simplified.

Again the subdivision (and orthogonality) is not strict, with many utilities and tasks stretch-
ing across the borders, and with no finishing step required for many aspects. Nevertheless,
as a rule, these three phases are represented by different methods inside the class of a
specific physics task.

2.2 Program files

The code is subdivided into a set of files, mainly by physics task. Each file typically contains
one main class, but often with a few related helper classes that are not used elsewhere in
the program. Normally the files come in pairs.

1. A header file, .h in the include subdirectory, where the public interface of the class
is declared, and inline methods are defined.

2. A source code file, .cc in the src subdirectory, where most of the methods are
implemented.

3

During compilation, related dependency files, .d, and compiled code, .o are created in the
tmp subdirectory.

In part the .xml documentation files in the doc subdirectory have matching names, but
the match is broken by the desire to group topics more by user interaction than internal
operation. The introduction you read now only represent an extract of the full information
available in the .xml files, hopefully eventually to evolve into a nice GUI.

Since the subprocess library currently is rather primitive, a copy of the Fortran code in
Pythia 6.4 is provided in the pythia6 subdirectory, so that hard processes can be fed in
from it.

For output to the HepMC event record format [8], an interface is provided in the
hepmcinterface subdirectory.

The installation procedure is described in a README file, and involves a Makefile and
either of the two files config.csh and config.sh. The libpythia8.a, libpythia6.a and
libhepmcinterface.a libraries are put in the lib subdirectory. The latter two may or
may not be built, depending on choice of values in the config files.

Finally, some examples of main programs, along with input files to them, are found in
the examples subdirectory. A Makefile there will allow you to build executables (placed
in the bin directory, but with links from examples).

Important warnings

Playing with the files in the examples subdirectory is encouraged, to familiarize oneself
with the program. Modifying the config files may be required during installation. For the
rest, files should not be modified, at least not without careful consideration of possible
consequences.

In particular, the .xml files are set read-only, and should not be tampered with. Inter-
spersed in them, there are lines beginning with <flag, <mode, <parameter, or <a. They
contain instructions from which Settings builds up its database of user-accessible variables,
see further below. Any stupid changes here will cause difficult-to-track errors!

Further, sometimes you will see two question marks, “??”, in the text or code. This is
for internal usage, to indicate loose ends or preliminary thoughts. Please disregard.

3 Key Program Elements

3.1 The main generation class

As has already been mentioned, the Pythia class is the main means of communication
between the user and the event generation process. We here present the key methods that
should be used, put in context.

Already at the top of the main program file you need to include the proper header file
#include "Pythia.h"

To simplify typing, it also makes sense to declare
using namespace Pythia8;

Given this, the first step in the main program is to create a generator object, e.g. with
Pythia pythia;

4

In the following we will assume that the pythia object has been created with this name,
but of course you are free to pick another one.

The Pythia constructor will initialize the default values for the Settings and the
ParticleDataTable data bases. In addition, the old Fortran 77 Pythia 6 obtained its
default values already at the loading stage. These data can now be modified in a number
of ways, but most conveniently by the two methods

pythia.readString(string);

for changing a single variable, and
pythia.readFile(fileName);

for changing a set of variables, one per line in the input file. The allowed form for a
string/line will be explained as we go along to consider the data bases in more detail. A
short summary is that

• a non-alphanumeric first non-blank character signals a comment line,

• a Pythia6:command = value string is taken as a command to Pythia 6,

• one like id:command = value, with id a number, as a modification to the particle
database, and

• anything else as a setting.

If the database in question then fails to parse the string, a warning is normally issued, but
in the end the relevant line is again considered as a comment and ignored.

To check which changes have actually taken effect in the settings database, it is conve-
nient to insert a

pythia.settings.listChanged();

while a complete listing with
pythia.settings.listAll();

gives a survey of all the possibilities. For the particle data there are corresponding
methods either to show only those particles that were changed (one way or another)

pythia.particleData.listChanged();

or to give the complete listing
pythia.particleData.listAll();

A specific particle can be listed with list(id), or a set as a vector<int> of id’s.
At this stage you can also insert hooks to some external facilities.
At the initialization stage all remaining details of the generation are to be specified.

The init method allows a few different input formats, so you can pick the one convenient
for you:

pythia.init(idA, idB, eA, eB);

lets you specify the identities and energies of the two incoming beam particles, with A (B)
assumed moving in the +z (−z) direction.

pythia.init(idA, idB, eCM);

is similar, but you specify the CM energy, and you are assumed in the rest frame.
pythia.init(LHAinit*, LHAevnt*);

assumes LHA initialization information is available in an LHAinit class object, and that
LHA event information will be provided by the LHAevnt class object, see below.

It is when the init call is executed that all the settings values are propagated to the
various program elements, and in some cases used to precalculate quantites that will be
used at later stages of the generation. Further settings changed after the init call will

5

be ignored (unless methods are used to force a partial or complete re-initialization). By
contrast, the particle properties database is queried all the time, and so a later change
would take effect immediately, for better or worse.

The bulk of the code is concerned with the event generation proper. However, all
the information on how this should be done has already been specified. Therefore only a
command

pythia.next();

is required to generate the next event. This method would be located inside an event
loop, where a required number of events are to be generated. However, the pythia.next()
command returns a bool value telling whether the generation succeeded or not. This is
useful e.g. when a file of LHA events comes to an end. Other unsolvable errors may also
result in a false value, in which case that event should be skipped. Most internal warning
and error messages are related to problems that can be fixed before it gets that far, however,
e.g. by taking a step back and trying again.

The key output of the pythia.next() command is the event record found in
pythia.event(), see below. A process-level summary of the event is stored in
pythia.process().

At the end of the generation process, you can call
pythia.statistics();

to get some run statistics, both on cross sections for the subprocesses generated and on the
number of errors and warnings issued.

3.2 The event record

The Event class for event records is nothing but a wrapper for a vector of Particles, to
first approximation. This vector can expand to fit the event size. The index operator is
overloaded, so that event[i] corresponds to the i’th particle of an Event object called
event. For instance, given that the PDG identity code [9] of a particle is provided by the
id() method, event[i].id() returns the identity of the i’th particle.

In this section, first the Particle methods are surveyed, and then the further aspects
of the event record.

3.2.1 The particle

A Particle corresponds to one entry/slot/line in the event record. Its properties therefore
is a mix of ones belonging to a particle-as-such, like its identity code or four-momentum,
and ones related to the event-as-a-whole, like which mother it has.

The following properties are stored for each particle, listed by the member functions
you can use to extract the information:

• id() : the identity of a particle, according to the PDG particle codes.

• status() : status code. The full set of codes provides info on where and why a
given particle was produced. The key feature, however, is that positive status codes
correspond to remaining particles of the event, while negative codes give ones that
have been processed further. If the latter has happened, the reason can be gleaned
by considering the status code of daughters.

6

• mother1(), mother2() : the indices in the event record where the first and last
mothers are stored, if any. A few different cases are possible, to allow for one or many
mothers. The motherList(i) method of the Event class can return a vector with all
the mothers, based on this info.

• daughter1(), daughter2() : the indices in the event record where the first and
last daughters are stored, if any. A few different cases are possible, to allow for one
or many daughters. The daughterList(i) method of the Event class can return a
vector with all the daughters, based on this info.

• col(), acol() : the colour and anticolour tags, LHA style.

• px(), py(), pz(), e() : the particle four-momentum components (in GeV/c or
GeV), alternatively extracted as a Vec4 p().

• m() : the particle mass (in GeV/c2).

• scale() : the scale at which a parton was produced (in GeV); model-specific but
relevant in the processing of an event.

• xProd(), yProd(), zProd(), tProd() : the production vertex coordinates (in mm
or mm/c), alternatively extracted as a Vec4 vProd().

• tau() : the proper lifetime (in mm/c).

The same method names, with a value inserted between the brackets, set these quantities.
In addition, a number of derived quantities can easily be obtained, but cannot be set,

such as:

• statusAbs() : the absolute value of the status code.

• remains() : true for a remaining particle, i.e. one with positive status code, else
false.

• pT(), pT2() : (squared) transverse momentum.

• mT(), mT2() : (squared) transverse mass.

• pAbs(), pAbs2() : (squared) three-momentum magnitude.

• theta(), phi() : polar and azimuthal angle.

• thetaXZ() : angle in the (p
x
, p

z
) plane, relative to +z axis, between −π and +π.

• pPlus(), pMinus() : E ± p
z
.

• y(), eta() : rapidity and pseudorapidity.

• xDec(), yDec(), zDec(), tDec() : the decay vertex coordinates, alternatively ex-
tracted as a Vec4 vDec().

Each Particle contains a pointer to the respective ParticleDataEntry object in the
particle data tables. This gives access to properties of the particle species as such. It is
there mainly for convenience, and should be thrown if an event is written to disk, to avoid
any problems of object persistency. This pointer is used by member functions such as:

• name() : the name of the particle, as a string.

• nameWithStatus() : as above, but for negative-status particles the name is given in
brackets, to emphasize that they are intermediaries.

• m0() : the nominal mass of the particle species (while mass() selects a new mass,
according to a Breit–Wigner, where relevant).

• colType() : 0 for colour singlets, 1 for triplets, −1 for antitriplets and 2 for octets.

• charge(), icharge() : charge, and three times it to make an integer.

• isCharged(), isNeutral() : bools whether icharge() is different from 0 or not.

7

3.2.2 Other methods in the event record

While the Particle vector is the key component of an Event, a few further methods are
available. The event size can be found with size(), i.e. valid particles are stored in the
range 0 ≤i< event.size(). Line 0 is used to represent the event as a whole, with its total
four-momentum and invariant mass, but does not form part of the event history. It is only
with lines 1 and 2, which contain the two incoming beams, that the history tracing begins.
That way unassigned mother and daughter indices can be put 0 without ambiguity.

A listing of the whole event is obtained with list(). The basic identity, status, mother,
daughter, colour, four-momentum and mass data are always given, but switches can be set
to provide further information, on the complete lists of mothers and daughters, and on
production vertices.

The user would normally be concerned with the Event object that is a public member
event of the Pythia class. Thus pythia.event[i].id() would be used to return the
identity of the i’th particle, and pythia.event.size() to give the size of the event record.

A Pythia object contains a second event record for the hard process alone, similar to the
LHA process specification, called process, used as input for the generation of the complete
event. Thus one may e.g. call either pythia.process.list() or pythia.event.list().
To distinguish those two rapidly at visual inspection, the “Pythia Event Listing” header is
printed out differently, adding either “(hard process)” or “(complete event)”.

There are also a few methods with an individual particle index i as input, but requiring
some search operations in the event record, and therefore not possible to define as methods
of the Particle class. An incomplete list is:

• motherList(i), daughterList(i), sisterList() : returns a vector<int> con-
taining a list of all the mothers, daughters or sisters of a particle. This list may be
empty or arbitrarily large, and is given in ascending order.

• iTopCopy(i), iBotCopy(i) : traces “carbon copies” (i.e. the same particle, but
shifted by various recoil effects) of the particle at index i up to its top mother or
down to its bottom daughter. If there are no such carbon copies, i itself will be
returned.

• iTopCopyId(i), iBotCopyId(i) : also trace top mother and bottom daughter, but
do not require carbon copies, only that one can find an unbroken chain, of mothers
or daughters, with the same flavour id code. The behaviour for common quarks and
gluons may be unpredictable (what to do in a g → gg branching?), but should work
well for “rare” particles.

One data member in an Event object is used to keep track of the largest col() or
acol() tag set so far, so that new ones do not clash.

The event record also contains a vector of junctions, which often is empty or else contains
only a very few per event. Methods are available to add further junctions or query the
current junction list. This is only for the expert user, however, and is not discussed further
here.

3.3 Other event information

A set of one-of-a-kind pieces of event information is stored in the Info info object in the
Pythia class. This is mainly intended for processes generated internally, while it is likely

8

not available for external processes.
You can use pythia.info.method() to extract e.g. the following information:

• list() : list some information on output.

• eCM(), s() : the cm energy and its square.

• name(), code() : the name and code of the subprocess.

• id1(), id(2) : the identities of the two partons coming in to the hard subprocess.

• x1(), x2() : x fractions of the two partons coming in to the hard subprocess.

• pdf1(), pdf2(), Q2pdf() : parton densities x f(x, Q2) evaluated for the two in-
coming partons, and the associated Q2 scale.

• mHat(), sHat(), tHat(), uHat() : the invariant mass of the hard subprocess and
the Mandelstam variables.

• pTHat(), thetaHat() : transverse momentum and polar scattering angle of the hard
subprocess.

In other classes there are also methods that can be called to do a sphericity analysis or
search for jets with a simple cone jet finder. These take the event record as input.

3.4 Databases

Inevitably one wants to be able to modify the default behaviour of a generator. Currently
there are two Pythia 8 databases with modifiable values. One deals with general settings,
the other specifically with particle data. In addition, Pythia 6 variables can be set for the
hard-process generation.

3.4.1 Settings

We distinguish three kinds of user-modifiable variables, by the way they have to be stored:

1. Flags are on/off switches, and are stored as bool.

2. Modes correspond to a finite enumeration of separate options, and are stored as int.

3. Parameters take a continuum of values, and are stored as double.

Collectively the three above kinds of variables are called settings (but if you have a better
term, please let me know). One could imagine strings as a fourth kind, but so far there has
been no need.

The Settings class keeps track of all the flags, modes and parameters in the pro-
gram. As such, it serves the other program elements from one central repository. The
Settings class is purely static, i.e. exists only as one global copy, that you can inter-
act with directly by Settings::command(argument). However, a settings object of the
Settings class is a public member of the Pythia class, so an alternative notation would
be pythia.settings.command(argument).

Each variable stored in Settings is associated with a few pieces of information:

• The variable name, of the form class:name (or file:name, usually these agree), e.g.
TimeShower:pTmin. The class/file part often, but not always, specifies the only part
of the program where the setting is used.

• The default value, set in the original declaration, and intended to represent a reason-
able choice.

• The current value, which differs from the default when the user so requests.

9

• An allowed range of values, represented by meaningful minimum and maximum values.
This has no sense for a flag (and is not used there), is usually rather well-defined for
a mode, but less so for a parameter. Either of the minimum and maximum may be
left free, giving an open-ended range. Often the allowed range exaggerates the degree
of our current knowledge, so as not to restrict too much what the user can do.

Technically, the Settings class is implemented with the help of three separate maps, one
for each kind of variable, with the name used as key.

Many methods exist that can be used to set or get values. Here we only describe the
two most convenient input ones, readString and readFile.

You can directly set values with Settings::readString(string), where both the vari-
able name and the value are contained inside the character string, separated by blanks
and/or an equal sign, e.g. "TimeShower:pTmin = 1.0". A string not beginning with an
alphanumeric character is considered as a comment and ignored. Therefore inserting an
initial !, #, $, %, or another such character, is a good way to comment out a command. For
non-commented strings, the match of the name to the database is case-insensitive. Strings
that do begin with a letter and still are not recognized cause a warning to be issued, unless
a second argument false is used in the call. Any further text after the value is ignored, so
the rest of the string can be used for any comments. Values below the minimum or above
the maximum are set at the respective border. For bool values, the following notation may
be used interchangeably: true = on = yes = ok = 1, while everything else gives false

(including but not limited to false, off, no and 0).
As already mentioned, the Pythia class contains a readString method that hands on

to the similarly-named Settings method, or to corresponding methods in ParticleData

or Pythia 6, the case being, and therefore offers the most flexible form:
pythia.readString("TimeShower:pTmin = 1.0");

The readString method is convenient for changing one or two settings, but becomes
cumbersome for more extensive modifications. In addition, a recompilation and relinking
of the main program is necessary for any change of values. Alternatively, the changes can
therefore be collected in a file, where each line corresponds to a character string (without
the quotes) of the same kind as above. Thus we could have a file, main.cmnd say, collecting
commands such as

TimeShower:pTmin = 1.0

PartonLevel:MI = off ! no multiple interactions

SpaceShower:alphaSorder = 2 ! second order running alpha-strong

The whole file can then be read and processed with Settings::readFile("main.cmnd").
A file read this way would only process commands specifically for Settings, while the
alternative pythia.readFile("main.cmnd") allows commands also for ParticleData and
Pythia 6 to be freely mixed in, and so is preferable.

You may obtain a listing of all variables in the database by calling
Settings::listAll();

The listing is strictly alphabetical, which at least means that names from the same file/class
are kept together, but otherwise may not be so well-structured: important and unimportant
ones will appear mixed. A more relevant alternative is

Settings::listChanged();

where you will only get those variables that differ from their defaults.

10

Table 1: Currently implemented processes.

Flag Process Code

SoftQCD:all sum of below 102 – 105

SoftQCD:elastic AB → AB 102

SoftQCD:singleDiffractive AB → XB, AB → AX 103, 104

SoftQCD:doubleDiffractive AB → X1X2 105

HardQCD:all sum of below 111 – 118

HardQCD:gg2gg gg → gg 111

HardQCD:gg2qqbar gg → qq 112

HardQCD:qg2qg qg → qg 113

HardQCD:qq2qq qq′ → qq′ 114, 115, 116

HardQCD:qqbar2qqbarNew qq → q′q′ 117

HardQCD:qqbar2gg qq → gg 118

PromptPhoton:all sum of below 131 – 135

PromptPhoton:qg2qgamma qg → qγ 131

PromptPhoton:qqbar2ggamma qq → gγ 132

PromptPhoton:gg2ggamma gg → gγ 133

PromptPhoton:qqbar2gammagamma qq → γγ 134

PromptPhoton:gg2gammagamma gg → γγ 135

3.4.2 Processes

Currently only very few processes are implemented internally in Pythia 8. These that are
there are switched on an off via the ordinary settings machinery, using the flags in Table 1.
By default all processes are off. The processes are grouped, so that a whole group can be
turned on by a GroupName:all = on command, then overriding the individual flags.

Currently it is not possible to mix internal processes with those from Pythia 6 or those
input via the Les Houches accord. Specifically, if any Pythia6: command is given, even if
not referring to a process, then Pythia 6 will be given control over the process generation.

Each process is assigned an integer code. This code is not used in the internal adminis-
tration of events, but only intended to allow a simpler user separation of different processes.
Also the process name is available, as a string.

For many processes it makes sense to apply phase space cuts. The ones currently
available (in the Settings database) include

• PhaseSpace:mHatMin, PhaseSpace:mHatMax : the range of invariant masses of the
scattering process.

• PhaseSpace:pTHatMin, PhaseSpace:pTHatMax : the range of transverse momenta
in the rest frame of the process for 2 → 2 processes.

Note that the SoftQCD processes do not use any cuts but generate their respective cross
sections in full.

11

3.4.3 Particle data

The ParticleDataTable class is purely static, i.e. you can interact with it directly
by ParticleDataTable::command(argument). However, a particleData object of the
ParticleDataTable class is a public member of the Pythia class, so an alternative notation
would be pythia.particleData.command(argument). Further, for some of the most fre-
quent user tasks, Pythia methods have been defined, so that pythia.command(argument)
would work, see further below.

This database does not have its final form, since further properties will need to be added
when processes with resonance decays are implemented. Currently the following particle
properties are stored in the ParticleDataTable for a given PDG particle identity code id,
here presented by the name used to access this property:

• hasAnti(id) : bool whether a distinct antiparticle exists or not.

• name(id) : particle and antiparticle names are stored separately, the sign of id

determines which of the two is returned, with ”void” used to indicate the absence of
an antiparticle.

• charge3(id) : three times the charge (to make it an integer), alternatively
charge(id), which is a double equal to charge3(id)/3.

• colType(id) : the colour type, with 0 uncoloured, 1 triplet, −1 antitriplet and 2
octet.

• m0(id) : the nominal mass m0 (in GeV).

• constituentMass(id) : the constituent mass for a quark, hardcoded as mu = md =
0.325, ms = 0.50, mc = 1.60 and mb = 5.0 GeV, for a diquark the sum of quark
constituent masses, and for everything else the same as the ordinary mass.

• width(id) : the width Γ of the Breit-Wigner distribution (in GeV).

• range(id) : the allowed mass range generated by the Breit-Wigner, |m − m0| <
range (in GeV).

• tau0(id) : the nominal proper lifetime τ0 (in mm/c).

• mayDecay(id) : a flag telling whether a particle species may decay or not, offering
the main user switch (whether a given particle of this kind then actually will decay
also depends on other flags in the ParticleDecays class).

Similar methods can also be used to set these properties.
Each particle kind in the ParticleDataTable also has a a vector of DecayChannels

associated with it. The following properties are stored for each decay channel:

• branchingRatio() : the branching ratio.

• modeME() : the mode of processing this channel, possibly with matrix-element infor-
mation.

• multiplicity() : the number of decay products in a channel, at most 8.

• product(i) : a list of the decay products, 8 products 0 ≤i< 8, with trailing unused
ones set to 0.

The original particle data and decay table is read in from the ParticleData.xml file.
Like for the Settings class, the two most convenient methods to change that data are
called readString and readFile, and the pattern is the same: readString takes as ar-
gument a character string that contains one change, while readFile takes as argument
a file name, where many changes can be stored, one per line. If you use the meth-

12

ods in the ParticleDataTable class, e.g. ParticleDataTable::readFile("main.cmnd")
commands are specific to this database, while the similarly-named methods in Pythia,
e.g. pythia.readFile("main.cmnd"), allow a free mixture of commands to Settings,
ParticleDataTable and Pythia6. Comments about case-insensitivity, alternative nota-
tion for bool values, and more, also carries over.

It is thus only the form of the particle properties that needs to be specified slightly
differently from those of the Settings variables. The general form is id:property =

value. The id part is the standard PDG particle code, and property is one of the ones
already described above, with a few minor differences: name, antiName, charge3, colType,
m0, width, range, tau0 and mayDecay. A few examples would be:

111:name = piZero

3122:mayDecay = false ! Lambda0 stable

431:tau0 = 0.15 ! D s proper lifetime

For major changes of the properties of a particle, the above one-at-a-time changes can
become rather cumbersome. Therefore a few extended input formats are available, where
a whole set of properties can be given after the equal sign, separated by blanks and/or by
commas. One line like

id:all = name antiName charge3 colType m0 width range tau0 mayDecay

replaces all the current information on the particle itself, but keeps its decay channels, if
any, while using new instead of all also removes any previous decay channels.

In order to change the decay data, the decay channel number needs to be given right after
the particle number, i.e. the command form becomes id:channel:property = value.
Recognized properties are branchingRatio, modeME and products, where the latter expects
a list of all the decay products, separated by blanks and/or by commas, up until the end
of the line, or until a non-number is encountered.. The property all will replace all the
information on the channel, i.e.

id:channel:all = branchingRatio modeME products

To add a new channel at the end, use
id:addChannel = branchingRatio modeME products

It is currently not possible to remove a channel selectively, but setting its branching ratio
vanishing is as effective.

When adding new channels or changing branching ratios is general, note that, once a
particle is to be decayed, the sum of then existing branching ratios is always rescaled to
unity. The construction id:rescaleBR = newSumBR may be used to rescale all the then
provided decay channels to a total branching ratio of newSumBR, e.g. to make place for
new decay channels to make up the remainder. The id:channel:rescaleBR = factor

multiplies the branching ratio of a given channel by the factor provided.
You may obtain a listing of all the particle data by calling

ParticleDataTable::listAll(). The listing is by increasing id number. To list
only those particles that have been changed, instead use listChanged(). To list only one
specific particle id, use list(id). It is also possible to list a vector<int> of id’s.

3.4.4 PYTHIA 6

In order to give access to the Fortran Pythia process library at runtime (and not only
by writing/reading event files) an interface is provided to C++. This interface is residing

13

in Pythia6.h, while the Fortran code is in Pythia6.f. The latter should normally be the
most recent Fortran Pythia version, but must be at least 6.314, since this is the first
version that allows internally generated processes to be stored in the LHA format.

The readString and readFile methods in Pythia can be used to modify the per-
formance of the Pythia 6 generator. The name of any variable must be preceded by
"Pythia6:" to distinguish it from normal Pythia 8 variables either in the Settings or
the ParticleDataTable classes. An example would be

pythia.readString("Pythia6:ckin(3) = 10.");

The first part is peeled off, to give the string "ckin(3) = 10.". This string is handed as
argument to pygive, accessed via an extern "C" pygive interface. Thus all parameters
that could be set with the Fortran routine PYGIVE can also be set by readString and
readFile. Only those commands that influence the generation of the hard process have
any impact, however, since this is the only part of the Fortran code that is used.

All hard Pythia 6 processes should be available, at least to the extent that they are
defined for beams of protons and antiprotons, which are the only ones fully implemented in
Pythia 8 so far. Soft processes, i.e. elastic and diffractive scattering, as well as minimum-
bias events, require a different kinematics machinery, and are not currently available.

3.5 Hooks to external programs

While Pythia 8 is intended to be self-contained, to the extent that you can run it without
reference to any external library, often you do want to make use of other programs that are
specialized on some aspect of the generation process.

3.5.1 The Les Houches interface

The LHA [7] for user processes is the standard way to input parton-level information from
a matrix-elements based generator into Pythia. The conventions for which information
should be stored has been defined in a Fortran context, as two commonblocks. Here a C++
equivalent is defined, as two separate classes.

The LHAinit and LHAevnt classes are base classes, containing reading and printout
methods, plus a pure virtual method each. Derived classes have to provide these two
virtual methods to do the actual work. Currently the only derived classes are for reading
information at runtime from the respective Fortran commonblock or for reading it from
previously produced Pythia 6.3 files.

The LHAinit class stores information equivalent to the /HEPRUP/ commonblock, as
required to initialize the event generation chain. The main difference is that the vector
container now allows a flexible number of subprocesses to be defined. For the rest, names
have been modified, since the 6-character-limit does not apply, and variables have been
regrouped for clarity, but nothing fundamental.

The pure virtual function set() has to be implemented in the derived class, to set
relevant information when called. It should return false if it fails. Information can be set
by the following methods:

• beamA(identity, energy, pdfGroup, pdfSet) : sets the properties of the first
incoming beam (IDBMUP(1), EBMUP(1), PDFGUP(1), PDFSUP(1)), and similarly for

14

beamB. The parton distribution information defaults to zero, meaning that internal
sets are used.

• strategy(choice) : sets the event weighting and cross section strategy (IDWTUP of
the Fortran version).

• process(idProcess, xSec, xErr, xMax) : sets info on an allowed process (LPRUP,
XSECUP, XERRUP, XMAXUP). Each new call will append one more entry to the list of
processes.

The information can be printed using the overloaded << operator, e.g.
cout << LHAinitObject; .

The LHAevnt class stores information equivalent to the /HEPEUP/ commonblock, as
required to hand in the next parton-level configuration for complete event generation. The
main difference is that the vector container now allows a flexible number of partons to be
defined. For the rest, names have been modified, since the 6-character-limit does not apply,
and variables have been regrouped for clarity, but nothing fundamental.

The LHA is based on Fortran arrays beginning with index 1, and mother information
is defined accordingly. In order to be compatible with this convention, the zeroth line of
the C++ particle array is kept empty, so that index 1 also here corresponds to the first
particle. One small incompatibility is that the size() method returns the full size of the
particle array, including the empty zeroth line, and thus is one larger than the true number
of particles (NUP).

The pure virtual function set() has to be implemented in the derived class, to set
relevant information when called. It should return false if it fails, e.g. if the supply of
events in a file is exhausted. Information can be set by the following methods:

• process(idProcess, weight, scale, alphaQED, alphaQCD) : tells which kind of
process occurred, with what weight, at what scale, and which αem and αs were used
(IDPRUP, XWTGUP, SCALUP, AQEDUP, AQCDUP of the Fortran version). This method also
resets the size of the particle list, and adds the empty zeroth line, so it has to be
called before the particle method below.

• particle(id, status, mother1, mother2, colourTag1, colourTag2,

p x, p y, p z, e, m, tau, spin) : gives the properties of the next particle handed
in (IDUP, ISTUP, MOTHUP(1,..), MOTHUP(2,..), ICOLUP(1,..), ICOLUP(2,..),
PUP(J,..), j from 1 through 5, VTIMUP, SPINUP) .

The information can be printed using the overloaded << operator, e.g.
cout << LHAevntObject; .

The LHAinitFortran and LHAevntFortran are two derived classes, containing set

members that read the respective Fortran commonblock for initialization and event in-
formation. This can be used for a runtime link to a Fortran library, and is the mechanism
used (transparently to the user) to link to the Pythia 6 process library.

The LHAinitPythia6 and LHAevntPythia6 are two other derived classes, that can read
files with initialization and event information, assuming that the files have been written
in the Pythia 6 format. The respective file name has to be given as argument at the
instantiation. Even if this specific implementation is not particularly interesting — the
same functionality can be obtained much simpler with the runtime interface to Pythia 6
— it can serve as a template for reading files written by more interesting other programs.

Once LHAinit and LHAevnt objects have been created, pointers to those should be

15

handed in with the init call, pythia.init(LHAinit*, LHAevnt*).

3.5.2 Parton distribution functions

The PDF class is the base class for all parton distribution function parametrizations, from
which specific PDF classes are derived. The choice of which PDF to use is made by a switch
in the Pythia class. Thus, a priori, there is no need for a normal user to study this class.
Currently the selection is very limited; for protons only CTEQ 5L (default) and GRV 94L
are available. It is therefore natural to want to interface to external PDF libraries, and
then the structure must be understood.

The constructor requires the incoming beam species to be given: even if used for a
proton PDF, one needs to know whether the beam is actually an antiproton. This is one
of the reasons why Pythia always defines two PDF objects in an event, one for each beam.

Once a PDF object has been constructed, call it pdf, the main method used in the
event generation is pdf.xf(id, x, Q2), which returns xfid(x, Q2), properly taking into
account whether the beam is an antiparticle or not.

Whenever the xf member is called with a new flavour, x or Q2, the xfUpdate member
is called to do the actual updating. This is the only pure virtual method, that therefore
must be implemented in any derived class. It may either update that particular flavour or
all flavours at this (x, Q2) point. The choice is to be made by the producer of a given set,
based on what he/she deems most effective, given that sometimes only one flavour need be
evaluated, and about equally often all flavours are needed at the same x and Q2. Anyway,
the latest value is always kept in memory. This is the other reason why Pythia has one
separate PDF object for each beam.

Once you have created two distinct PDF objects, pdfA and pdfB, you should supply
pointers to these as arguments in a PDFptr method call

pythia.PDFptr(pdfA*, pdfB*);

This has to be made before the pythia.init(...) call.

3.5.3 External decays

While Pythia is set up to handle any particle decays, decay products are often (but not
always) distributed isotropically in phase space, i.e. polarization effects and nontrivial ma-
trix elements usually are neglected. Especially for the τ lepton and for some B mesons it
is therefore common practice to rely on dedicated decay packages.

To this end, DecayHandler is a base class for the external handling of decays. The
user-written derived class is called if a pointer to it has been given with the
pythia.decayPtr(DecayHandler*, vector<int>) method. The second argument to
this method should contain the id codes of all the particles that should be decayed by
the external program. It is up to the author of the derived class to send different of these
particles on to separate packages, if so desired.

There is only one pure virtual method in DecayHandler, to do the decay:
decay(idProd, mProd, pProd, iDec, event). Here

• idProd is a vector<int> of particle PDG identity codes,

• mProd is a vector<double> of their respective masses (in GeV), and

16

• pProd is a vector<Vec4> of their respective four-momenta (components px(), py(),
pz() and e()),

• iDec is the position in the event record of the decaying particle, and

• event is a read-only reference to the complete event record, so that the full prehistory
of the decaying particle can be extracted, should this be of interest for the decay
treatment.

When the decay method is called, the three vectors each have size one, so that
idProd[0], mProd[0] and pProd[0] contain information on the particle that is to be
decayed. When the decay is done, the vectors should have increased by the addition of all
the decay products, starting at index 1. Even if initially defined in the rest frame of the
mother, the products should have been boosted so that their four-momenta add up to the
pProd[0] of the decaying particle. (Given a Vec4 pNew defined in the decaying particle
rest frame, the boost can be performed by pNew.bst(pProd[0]).)

The routine should return true if it managed to do the decay and false otherwise. In
the latter case Pythia will try to do the decay itself. Thus one may implement some decay
channels externally and leave the rest for Pythia, assuming the Pythia decay tables are
adjusted accordingly.

Note that the decay vertex is always set by Pythia, and that B–B oscillations have al-
ready been taken into account, if they were switched on. Thus the decaying code idProd[0]
may be the opposite to the produced one, stored in event[iDec].id().

3.5.4 Random number generators

RndmEngine is a base class for the external handling of random number generation.
The user-written derived class is called if a pointer to it has been handed in with the
pythia.rndmEnginePtr(RndmEngine*) method. Since the default Marsaglia-Zaman al-
gorithm is quite good, there is absolutely no physics reason to replace it, but this may still
be required for consistency with other program elements in big experimental frameworks.

There is only one pure virtual method in RndmEngine, called flat(), that should return
one random number uniformly distributed in the range between 0 and 1 each time it is called.

Note that methods for initialization are not provided in the base class, in part since
input parameters may be specific to the generator used, in part since initialization is likely
to be taken care of externally to Pythia.

4 Getting Going

After you downloaded the pythia8048.tgz package from the Pythia webpage, you can
unpack it with tar xvfz pythia8048.tgz. The rest of the installation procedure is de-
scribed in the README file. It is assumed you are on a Linux system, so far no multiplatform
support.

After this, the main program is up to the user to write. However, sample main pro-
grams are provided in the examples subdirectory, currently main01 through main12. These
programs are included to serve as inspiration when starting to write your own program, by
illustrating the principles involved. However, clearly they are not intended to be realistic.

17

Frequently commands to the Settings, ParticleDataTable or Pythia6 machineries
are collected in a single ”cards file”, separate from the main program proper, so that minor
changes can be made without any recompilation. It is then convenient to collect in the
same place some run parameters, such as the number of events to generate, that could be
used inside the main program. Whether they actually are used is up to the author of a
main program to decide.

The following variables have been defined, and can be extracted with the Settings

methods:

• Main:numberOfEvents : the number of events to be generated.

• Main:numberToList : the number of events to list, at the beginning of the run.

• Main:numberToShow : print the number of events generated so far, to show how the
run is progressing, once every numberOfEvents/numberToShow events.

• Main:timesAllowErrors : abort the run after this many errors have been found.

• Main:showChangedSettings : print a list of the changed flag/mode/parameter set-
tings.

• Main:showAllSettings : print a list of all flag/mode/parameter settings.

• Main:showChangedParticleData : print a list of changed particle and decay data.

• Main:showAllParticleData : print a list of all particle and decay data.

• Main:idBeamA, Main:idBeamB : the PDG id codes for the two incoming particles.

• Main:inCMframe : whether collisions occur in the CM frame or not.

• Main:eCM : collision CM energy, if Main:inCMframe is true.

• Main:eBeamA, Main:eBeamB : the energies of the two incoming beam particles, mov-
ing in the ±z directions, if Main:inCMframe is false. If the particle energy is smaller
than its mass then it is assumed to be at rest.

5 Outlook

As already explained in the introduction, Pythia 8 is still at an early stage. It is possible
to set up and run various processes and get out sensible-looking event records, containing
all the major physics aspects. However, none of the respective classes is fully developed
or debugged. Many aspects are still missing, like a library of at least the most common
processes of interest, and a coherent picture of colour flow, involving timelike and spacelike
showers, multiple interactions and beam remnants. So do not bother to contact me about
Pythia 6 features you miss in the new program; such shortcomings are already known.
However, if you have comments about what is there — positive or negative ones — then
do let me know. Several aspects could still be changed, before a first production-quality
version, hopefully sometime in early 2007.

Acknowledgements

The support and kind hospitality of the SFT group at CERN is gratefully acknowledged.
Discussions with Stephen Mrenna and Peter Skands have been helpful. Mikhail Kirsanov
has contributed the interface to HepMC, the makefiles and other expertise to simplify the
installation and operation of the package.

18

References

[1] T. Sjöstrand, Computer Physics Commun. 27 (1982) 243, 28 (1983) 229, 39 (1986)
347;
T. Sjöstrand and M. Bengtsson, Computer Physics Commun. 43 (1987) 367

[2] H.-U. Bengtsson, Computer Physics Commun. 31 (1984) 323;
H.-U. Bengtsson and G. Ingelman, Computer Physics Commun. 34 (1985) 251;
H.-U. Bengtsson and T. Sjöstrand, Computer Physics Commun. 46 (1987) 43;
T. Sjöstrand, Computer Physics Commun. 82 (1994) 74

[3] T. Sjöstrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna and E. Norrbin,
Computer Physics Commun. 135 (2001) 238;
T. Sjöstrand, S. Mrenna and P. Skands, LU TP 06–13, FERMILAB-PUB-06-052-CD-T
[hep-ph/0603175]

[4] L. Lönnblad, Computer Physics Commun. 118 (1999) 213;
M. Bertini, L. Lönnblad and T. Sjöstrand, Computer Physics Commun. 134 (2001)
365

[5] S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens and B.R. Webber, JHEP 0402

(2004) 005;
see webpage http://hepforge.cedar.ac.uk/herwig/

[6] see webpage http://www.thep.lu.se/ThePEG/

[7] E. Boos et al., in the Proceedings of the Workshop on Physics at TeV Colliders, Les
Houches, France, 21 May - 1 Jun 2001 [hep-ph/0109068]

[8] M. Dobbs and J.B. Hansen, Computer Physics Comm. 134 (2001) 41

[9] Particle Data Group, S. Eidelman et al., Phys. Lett. B592 (2004) 1

19

