Monte Carlos for LHC

Torbjörn Sjöstrand
CERN and Lund University

Generator and Physics Overview
Matrix Elements vs. Parton Showers
Underlying Event and Hadronization
Outlook
Event Generator Position

“real life”

Machine \Rightarrow events

produce events

observe & store events

Detector, Data Acquisition

Detector Simulation

“virtual reality”

Event Generator

Event Reconstruction

what is knowable?

compare real and simulated data

where and why?

- detector requirements
- analysis strategies
- acceptance corrections

physics is complex

conclusions, articles, talks, ...
Event Physics Overview

Structure of the basic generation process:

1) Hard subprocess: $|\mathcal{M}|^2$, Breit-Wigners, parton densities.

2) Resonance decays: includes correlations.

3) Final-state parton showers.

4) Initial-state parton showers.
5) Multiple parton–parton interactions.

6) Beam remnants, with colour connections.

5) + 6) = Underlying Event

7) Hadronization

8) Ordinary decays: hadronic, τ, charm, ...
9) QCD interconnection effects:

\[
\begin{align*}
e^+ & \rightarrow W^+ & q_1 \\
e^- & \rightarrow W^- & q_3 \\
\end{align*}
\]

\(\bar{q}_4 \)

\(\bar{q}_2 \)

\(\pi^+ \) \(\Rightarrow \) BE

a) colour rearrangement

\(\Rightarrow \) rapidity gaps?

b) Bose-Einstein.

10) The forgotten or unexpected: a chain is never stronger than its weakest link!

Many aspects still poorly understood, but most good enough to work with.
Generator Landscape

<table>
<thead>
<tr>
<th>Hard Processes</th>
<th>General-Purpose</th>
<th>Specialized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonance Decays</td>
<td>HERWIG</td>
<td>a lot</td>
</tr>
<tr>
<td>Parton Showers</td>
<td>PYTHIA</td>
<td>HDECAY, ...</td>
</tr>
<tr>
<td>Underlying Event</td>
<td>ISAJET</td>
<td>Ariadne/LDC, NLLjet</td>
</tr>
<tr>
<td>Hadronization</td>
<td>SHERPA</td>
<td>DPMJET</td>
</tr>
<tr>
<td>Ordinary Decays</td>
<td></td>
<td>none (?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAUOLA, EvtGen</td>
</tr>
</tbody>
</table>

specialized often best at given task, but need General-Purpose core
The Smaller Picture: Subprocess Survey

<table>
<thead>
<tr>
<th>Kind</th>
<th>Process</th>
<th>PYT</th>
<th>HER</th>
<th>ISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD & related</td>
<td>Soft QCD</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td></td>
<td>Hard QCD</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td></td>
<td>Heavy flavour</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Electroweak SM</td>
<td>Single $\gamma^*/Z^0/W^\pm$</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td></td>
<td>$(\gamma/\gamma^*/Z^0/W^\pm/f/g)^2$</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td></td>
<td>Light SM Higgs</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td></td>
<td>Heavy SM Higgs</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>SUSY BSM</td>
<td>$h^0/H^0/A^0/H^\pm$</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td></td>
<td>SUSY</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td></td>
<td>R SUSY</td>
<td>★</td>
<td>★</td>
<td>—</td>
</tr>
<tr>
<td>Other BSM</td>
<td>Technicolor</td>
<td>★</td>
<td>—</td>
<td>(★)</td>
</tr>
<tr>
<td></td>
<td>New gauge bosons</td>
<td>★</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Compositeness</td>
<td>★</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Leptoquarks</td>
<td>★</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>$H^{\pm\pm}$ (from LR-sym.)</td>
<td>★</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Extra dimensions</td>
<td>(★)</td>
<td>(★)</td>
<td>(★)</td>
</tr>
</tbody>
</table>

...but processes usually only in lowest nontrivial order
need standardized interfaces
The Les Houches Accord

Specialized Generator \(\Rightarrow \) Hard Process

Les Houches Interface

HERWIG or PYTHIA
- (Resonance Decays)
- Parton Showers
- Underlying Event
- Hadronization
- Ordinary Decays

Some Specialized Generators:
- AcerMC: \(t\bar{t}b\bar{b}, \ldots \)
- ALPGEN: \(W/Z^+ \leq 6j, \quad nW + mZ + kH^+ \leq 3j, \ldots \)
- AMEGIC++: generic LO
- CompHEP: generic LO
- GRACE+Bases/Spring: generic LO+ some NLO loops
- GR@PPA: \(b\bar{b}b\bar{b} \)
- MadCUP: \(W/Z^+ \leq 3j, t\bar{t}b\bar{b} \)
- MadGraph+HELAS: generic LO
- MCFM: NLO \(W/Z^+ \leq 2j, \quad WZ, WH, H^+ \leq 1j \)
- O’Mega+WHIZARD: generic LO
- VECBOS: \(W/Z^+ \leq 4j \)

Apologies for all unlisted programs
Matrix Elements vs. Parton Showers

ME: Matrix Elements
+ systematic expansion in α_s (‘exact’)
+ powerful for multiparton Born level
+ flexible phase space cuts
 - loop calculations very tough
 - negative cross section in collinear regions
 \Rightarrow unpredictable jet/event structure
 - no easy match to hadronization

PS: Parton Showers
- approximate, to LL (or NLL)
- main topology not predetermined
 \Rightarrow inefficient for exclusive states
+ process-generic \Rightarrow simple multiparton
+ Sudakov form factors/resummation
 \Rightarrow sensible jet/event structure
+ easy to match to hadronization
Parton Shower Approach

3 common algorithms:
HERWIG: θ-ordered emissions (ISR & FSR)
PYTHIA: M^2, Q^2-ordered emissions (ISR & FSR)
ARIADNE: p_\perp-ordered emissions (FSR primarily)

Steady evolution:
HERWIG: new angular evolution variable
⇒ improved phase space coverage,
 better massive quark treatment
PYTHIA: p_\perp-ordered emissions (ISR & FSR)
⇒ improved coherence,
 interleaved multiple interactions,
 (to prove:) simplified vetoed parton showers
LDCMD, CASCADE: CCFM generators for ISR at small x
Matrix Elements and Parton Showers

Marriage desirable! But how?

Problems:

- gaps in coverage?
- doublecounting of radiation?
- Sudakov?
- NLO consistency?

Much work ongoing \implies no established orthodoxy

Three main areas, in ascending order of complication:

1) Match to lowest-order nontrivial process — merging

2) Combine leading-order multiparton process — vetoed parton showers (cf. talk by M. Mangano)

3) Match to next-to-leading order process — MC@NLO (covered in talk by S. Frixione)
Merging

= cover full phase space with smooth transition ME/PS

Want to reproduce

\[W^{\text{ME}} = \frac{1}{\sigma(\text{LO})} \int \frac{d\sigma(\text{LO} + g)}{d(\text{phasespace})} \]

by shower generation + correction procedure

\[\frac{\hat{W}^{\text{ME}}}{\hat{W}^{\text{PS}}} = \frac{\hat{W}^{\text{PS}}}{\hat{W}^{\text{PS}}} \]

- Exponentiate ME correction by shower Sudakov form factor:

\[W^{\text{PS}}_{\text{actual}}(Q^2) = W^{\text{ME}}(Q^2) \exp \left(- \int_{Q_2}^{Q_{\text{max}}} W^{\text{ME}}(Q') dQ'^2 \right) \]

- Normally several shower histories ⇒ ~equivalent approaches

- Use \(d\sigma = K \sigma_0 \ dW^{\text{PS}} \)

where \(K = 1 + \mathcal{O}(\alpha_s) \) is set separately (ambiguity of \(\mathcal{O}(\alpha_s^2) \))
PYTHIA performs merging with generic FSR \(a \rightarrow b c g \) ME, in SM: \(\gamma^*/Z^0/W^\pm \rightarrow q\bar{q}, \ t \rightarrow bW^+, \ H^0 \rightarrow q\bar{q}, \) and MSSM: \(t \rightarrow bH^+, \ Z^0 \rightarrow q\bar{q}, \ q \rightarrow q'W^+, \ H^0 \rightarrow q\bar{q}, \ q \rightarrow q'H^+, \chi \rightarrow q\bar{q}, \chi \rightarrow q\bar{q}, \ q \rightarrow q\chi, \ t \rightarrow \tilde{t}\chi, \tilde{g} \rightarrow q\bar{q}, \ q \rightarrow q\tilde{g}, \ t \rightarrow \tilde{t}\tilde{g} \)

\(g \) emission for different colour, spin and parity:

\[
R_{3bl}(y_c): \text{mass effects in Higgs decay:}
\]

PYTHIA ISR: only \(q\bar{q} \rightarrow \gamma^*/Z^0/W^\pm \) and \(gg \rightarrow H^0 \) (for \(m_t \rightarrow \infty \)) (but \(K \) factor not implemented here)

HERWIG: fewer for FSR, comparable for ISR
Vetoed Parton Showers

Generic method to combine ME’s of several different orders to NLL accuracy; will be a ‘standard tool’ in the future

Basic idea:
• consider (differential) cross sections \(\sigma_0, \sigma_1, \sigma_2, \sigma_3, \ldots \), corresponding to a lowest-order process (e.g. W or H production), with more jets added to describe more complicated topologies, in each case to the respective leading order
• \(\sigma_i, i \geq 1 \), are divergent in soft/collinear limits
• absent virtual corrections would have ensured “detailed balance”, i.e. an emission that adds to \(\sigma_{i+1} \) subtracts from \(\sigma_i \)
• such virtual corrections correspond (approximately) to the Sudakov form factors of parton showers
• so use shower routines to provide missing virtual corrections \(\Rightarrow \) rejection of events (especially) in soft/collinear regions
Veto scheme:
1) Pick hard process, mixing according to $\sigma_0 : \sigma_1 : \sigma_2 : \ldots$, above some ME cutoff, with large fixed α_s_0
2) Reconstruct imagined shower history (in different ways)
3) Weight $W_{\alpha} = \prod_{\text{branchings}} \left(\frac{\alpha_s(k^2_{\perp, i})}{\alpha_s_0} \right) \Rightarrow \text{accept/reject}$

CKKW-L:
4) Sudakov factor for non-emission on all lines above ME cutoff
 $W_{\text{Sud}} = \prod \text{“propagators”} \ \text{Sudakov}(k^2_{\perp, \text{beg}}, k^2_{\perp, \text{end}})$
4a) CKKW : use NLL Sudakovs
4b) L: use trial showers
5) $W_{\text{Sud}} \Rightarrow \text{accept/reject}$
6) do shower,
 vetoing emissions above cutoff

MLM:
4) do parton showers
5) (cone-)cluster showered event
6) match partons and jets
7) if all partons are matched, and $n_{\text{jet}} = n_{\text{parton}}$,
 keep the event,
 else discard it
Multiple Interactions

Consequence of composite nature of hadrons!

Evidence:
- direct observation: AFS, UA1, CDF
- implied by width of multiplicity distribution + jet universality: UA5
- forward–backward correlations: UA5
- pedestal effect: UA1, H1, CDF

One new free parameter: $p_{\perp \text{min}}$

$$\frac{1}{2} \sigma_{\text{jet}} = \int_{s/4}^{\infty} \frac{d\sigma}{dp_{\perp}^2} dp_{\perp}^2 \quad \leftarrow \quad \int_{0}^{s/4} \frac{d\sigma}{dp_{\perp}^2} \frac{p_{\perp}^4}{(p_{\perp 0}^2 + p_{\perp}^2)^2} dp_{\perp}^2$$

Measure of colour screening length d in hadron:

$$p_{\perp \text{min}} \langle d \rangle \approx 1(\equiv \bar{n})$$
Event Structure and Beam Remnants

(TS & P.Z. Skands, JHEP 03 (2004) 053)

Need to assign:
- correlated flavours
- correlated $x_i = p_{zi}/p_{ztot}$
- correlated primordial $k_{\perp i}$
- correlated colours for initiators and remnants + showers

Example: parton densities after first interaction:
- valence: scale by #remaining/#original
- sea: bookkeep ‘companion’ by

$$\bar{s}(x'; x) \propto \frac{g(x + x')}{x + x'} P_{g\to s\bar{s}} \left(\frac{x}{x + x'} \right)$$
Interleaved Multiple Interactions

(TS & P.Z. Skands, hep-ph/0408302)

Data comparisons:
usually \sim Tune A
but need good tuning

$\langle p_\perp \rangle (n_{\text{ch}})$ problem:
colour correlations?
Hadronization: Lund String Model

In QCD, for large charge separation, field lines seem to be compressed to tubelike region(s) \(\Rightarrow \text{string(s)} \)

String tension: \(F(r) \approx \text{const} = \kappa \iff V(r) \approx \kappa r \)

Confirmed e.g. by quenched lattice QCD
Unquenched \(\Rightarrow \) nonperturbative string breakings

Gluon = kink on string, carrying energy and momentum.

Force ratio
Glue/ quark = 2,
cf. QCD \(N_C/C_F = 9/4 \)

- Few parameters to describe energy–momentum structure!
- Many parameters to describe flavour composition!
Lund hadronization news: fragmentation of junction topology, in R-parity violating SUSY decays $\tilde{\chi}_1^0 \rightarrow uds$, or when 2 valence quarks kicked out of proton beam

More complicated (but \approx solved) with gluon emission and massive quarks

Also new: fragmentation of stable gluino
Hadronization: HERWIG Cluster Model

Introduce forced $g \rightarrow q\bar{q}$ branchings:

Large-mass clusters require special attention
- Many parameters to describe energy–momentum structure!
- Few parameters to describe flavour composition!
Standards and Interfaces

★★★★ PDG particle codes
★★★★ HEPEVT hadron-level Event Record
★★★★ Les Houches Accord User Process Interface
★★★★ LHAPDF: Les Houches Accord Parton Density Functions (supersedes PDFLIB)
★★★★ SLHA: SUSY mass/coupling spectrum calculator interface
★★ HepMC hadron-level Event Record in C++
★★ JetWeb/HZtools: automated data comparisons
★ StdHep, StdHepC++: converts non-standard particle codes
★ HepPDT particle data tables in C++
★ ? For C++ era: (improved) Les Houches Interface for HO or NLO ME’s, standardized cuts, standard cone clustering algorithm, ...
On To C++

PYTHIA7 project \iff ThePEG
Toolkit for High Energy Physics Event Generation:
general-purpose framework, kinematics, ME machinery, decays, ...
(L. Lönnblad; S. Gieseke, A. Ribon, P. Richardson)

ARIADNE/LDC: to do ISR/FSR showers, multiple interactions
(L. Lönnblad; N. Lavesson)

PYTHIA7 leftover: old showers + incomplete string fragmentation
\Rightarrow restart from scratch 2 months ago (TS)

HERWIG++: new final-state shower + improved cluster model
and decays \Rightarrow e^+e^- complete, pp underway
(B.R. Webber; S. Gieseke, A. Ribon, P. Richardson, M. Seymour, P. Stephens)

SHERPA: does pp, but partly wrappers to PYTHIA Fortran; has CKKW
(F. Krauss; T. Gleisberg, S. Hoeche, A. Schaelicke, S. Schumann, J. Winter)

• Conversion effort: everything takes longer and costs more
 (as for LHC machine, detectors and software)
• The physics hurdle is as steep as the C++ learning curve
Outlook

Generators in state of continuous development:

- better & more user-friendly general-purpose
 matrix element calculators+integrators
- new libraries of physics processes, also to NLO
 - more precise parton showers
- better matching matrix elements ↔ showers
- improved models for underlying events / minimum bias
 - upgrades of hadronization and decays
 - moving to C++
 ⇒ always better, but never enough

But what are the alternatives, when event structures are complicated
and analytical methods inadequate?