

ATLAS week CERN 17 February 2005

LUND UNIVERSITY

# New $p_{\perp}$ -ordered Showers and Interleaved Multiple Interactions

**Torbjörn Sjöstrand**<sup>1</sup> + Peter Skands<sup>2</sup>

Department of Theoretical Physics, Lund University

<sup>1</sup> now at CERN <sup>2</sup> now at FNAL

EPJ C39 (2005) 129 [hep-ph/0408302] also JHEP 03 (2004) 053 [hep-ph/0402078]





## The structure of an event

Multiple interactions

The  $p_{\perp}$ -based philosophy

 $p_\perp\text{-}ordered$  showers

Interleaved interactions

Outlook

# The structure of an event

Warning: schematic only, everything simplified, nothing to scale, ...



Incoming beams: parton densities



Hard subprocess: described by matrix elements



Resonance decays: correlated with hard subprocess



### Initial-state radiation: spacelike parton showers



#### Final-state radiation: timelike parton showers



Multiple parton-parton interactions ...



... with its initial- and final-state radiation



Beam remnants and other outgoing partons



### Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths



The strings fragment to produce primary hadrons





These are the particles that hit the detector

LHC events are messy! Why care to understand?

# Parton showers and multiple interactions contain many interesting and unsolved QCD issues in their own right.

They are also needed to understand signals of and backgrounds to other physics, if these invove jets (= hadrons, photons) or could be affected by the underlying event.

Parton showers are responsible for:

- creation of multijet topologies
  - broadening of jet profiles
  - shifts in jet energy scale
  - nontrival  $p_{\perp}$  correlations
    - (non-)isolation of  $\ell, \gamma$

Multiple interactions are responsible for:

- large fraction of total multiplicity
- fluctuations to large multiplicities
  - rapidity correlations in activity
  - multiple (mini)jet production
  - jet profile and jet pedestal
  - shifts in jet energy scale
    - (non-)isolation of  $\ell,\gamma$





The structure of an event

## **Multiple interactions**

The  $p_{\perp}$ -based philosophy

 $p_\perp\text{-}ordered$  showers

Interleaved interactions

Outlook

## What is multiple interactions?

Cross section for 2  $\rightarrow$  2 interactions is dominated by *t*-channel gluon exchange, so diverges like  $d\sigma/dp_{\perp}^2 \approx 1/p_{\perp}^4$  for  $p_{\perp} \rightarrow 0$ .



So  $\sigma_{int}(p_{\perp min}) > \sigma_{tot}$  for  $p_{\perp min} \lesssim 5 \text{ GeV}$ 

Half a solution: many interactions per event

$$\sigma_{\text{tot}} = \sum_{n=0}^{\infty} \sigma_n$$
  
$$\sigma_{\text{int}} = \sum_{n=0}^{\infty} n \sigma_n$$
  
$$\sigma_{\text{int}} > \sigma_{\text{tot}} \iff \langle n \rangle >$$



Other half of solution:

perturbative QCD not valid at small  $p_{\perp}$  since q, g not asymptotic states.

1

Naively breakdown at

$$p_{\perp \min} \simeq \frac{\hbar}{r_{\rm p}} \approx \frac{0.2 \text{ GeV} \cdot \text{fm}}{0.7 \text{ fm}} \approx 0.3 \text{ GeV} \simeq \Lambda_{\rm QCD}$$



... but better replace  $r_p$  by (unknown) colour screening length d in hadron

so modify

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^{2}} \propto \frac{\alpha_{\mathrm{s}}^{2}(p_{\perp}^{2})}{p_{\perp}^{4}} \rightarrow \frac{\alpha_{\mathrm{s}}^{2}(p_{\perp}^{2})}{p_{\perp}^{4}} \theta \left(p_{\perp} - p_{\perp \min}\right) \quad \text{(simpler)}$$
$$\text{or} \rightarrow \frac{\alpha_{\mathrm{s}}^{2}(p_{\perp 0}^{2} + p_{\perp}^{2})}{(p_{\perp 0}^{2} + p_{\perp}^{2})^{2}} \quad \text{(more physical)}$$

where  $p_{\perp \min}$  or  $p_{\perp 0}$  are free parameters, empirically of order **2 GeV** 

Typically 2 – 3 interactions/event at the Tevatron, 4 – 5 at the LHC, but may be more in "interesting" high- $p_{\perp}$  ones.

# Modelling multiple interactions

# T. Sjöstrand, M. van Zijl, PRD36 (1987) 2019: first model(s) for event properties based on perturbative multiple interactions

### (1) Simple scenario:

- Sharp cut-off at  $p_{\perp \min}$  main free parameter
- Is only a model for nondiffractive events, i.e. for  $\sigma_{nd} \simeq (2/3)\sigma_{tot}$
- Average number of interactions is  $\langle n \rangle = \sigma_{int}(p_{\perp min})/\sigma_{nd}$
- Interactions occur independently

 $\Rightarrow$  Poissonian statistics  $\mathcal{P}_n = \langle n \rangle^n e^{-\langle n \rangle} / n!$ 

with fraction  $\mathcal{P}_0 = e^{-\langle n \rangle}$  pure low- $p_{\perp}$  events

• Interactions generated in ordered sequence  $p_{\perp 1}>p_{\perp 2}>p_{\perp 3}>\ldots$  by "Sudakov" trick

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp i}} = \frac{1}{\sigma_{\mathrm{nd}}} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}} \exp\left[-\int_{p_{\perp}}^{p_{\perp}(i-1)} \frac{1}{\sigma_{\mathrm{nd}}} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}'} \mathrm{d}p_{\perp}'\right]$$

- Momentum conservation in PDF's  $\Rightarrow \mathcal{P}_n$  narrower than Poissonian
- Simplify after first interaction: only gg or  $q\overline{q}$  outgoing, no showers, ...

### (2) More sophisticated scenario:

- Smooth turn-off at  $p_{\perp 0}$  scale
- Require  $\geq$  1 interaction in an event
- Hadrons are extended:

$$\rho_{\text{matter}}(r) = N_1 \exp\left(-\frac{r^2}{r_1^2}\right) + N_2 \exp\left(-\frac{r^2}{r_2^2}\right)$$

where  $r_2/r_1 \neq 1$  represents "hot spots"

- $\bullet$  Events are distributed in impact parameter b
- Central collisions normally are more active  $\Rightarrow \mathcal{P}_n$  broader than Poissonian
- More time-consuming  $(b, p_{\perp})$  generation
- Need for simplifications remains

### (3) HERWIG $\rightarrow$ Jimmy

- similar to (2) above; but details different
- no  $p_{\perp}$ -ordering of emissions, no rescaling of PDF: abrupt stop when (if) run out of energy



# Evidence for multiple interactions

- Width of multiplicity distribution: UA5, E735
- Forward–backward correlations: UA5
- Minijet rates: UA1
- Direct observation: AFS, (UA2,) CDF

Order 4 jets  $p_{\perp 1} > p_{\perp 2} > p_{\perp 3} > p_{\perp 4}$  and define  $\varphi$  as angle between  $p_{\perp 1} - p_{\perp 2}$  and  $p_{\perp 3} - p_{\perp 4}$ 



Double BremsStrahlung





 $d\sigma/d\varphi$  peaked at  $\varphi \approx 0$ 



Strong enhancement relative to naive expectations!

• Jet pedestal effect: UA1, H1, CDF Events with hard scale (jet, W/Z, ...) have more underlying activity! Events with n interactions have n chances that one of them is hard, so "trigger bias": hard scale  $\Rightarrow$  central collision  $\Rightarrow$  more interactions  $\Rightarrow$  larger underlying activity. Centrality effect saturates at  $p_{\parallel hard} \sim 10$  GeV.

Studied in detail by Rick Field, comparing with CDF data:



### **"MAX/MIN Transverse" Densities**

• Define the MAX and MIN "transverse" regions on an event-by-event basis with MAX (MIN) having the largest (smallest) density.

### Leading Jet: "MAX & MIN Transverse" Densities PYTHIA Tune A HERWIG



Charged particle density and PTsum density for "leading jet" events versus E<sub>T</sub>(jet#1) for PYTHIA Tune A and HERWIG.



Shows the  $\Delta\phi$  dependence of the "associated" charged particle density, dN<sub>chg</sub>/dηd $\phi$ , p<sub>T</sub> > 0.5 GeV/c,  $|\eta| < 1$ , PTmaxT > 2.0 GeV/c (*not including PTmaxT*) relative to PTmaxT (rotated to 180°) and the charged particle density, dN<sub>chg</sub>/dηd $\phi$ , p<sub>T</sub> > 0.5 GeV/c,  $|\eta| < 1$ , relative to jet#1 (rotated to 270°) for "back-to-back events" with 30 < E<sub>T</sub>(jet#1) < 70 GeV.

KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF



KITP Collider Workshop

Rick Field - Florida/CDF





The structure of an event

Multiple interactions

Backup multiple interactions

The  $p_\perp\text{-based}$  philosophy

 $p_\perp\text{-}ordered$  showers

Interleaved interactions

Outlook

## Further evidence for multiple interactions



AFS 4-jet analysis (pp at 63 GeV); double bremsstrahlung subtracted: observed 6 in arbitrary units no MI 0 simple MI 1 double Gaussian 3.7

#### UA1 minijet rates

| No. jets | UA1  | no MI | simple | double   |
|----------|------|-------|--------|----------|
|          | (%)  |       |        | Gaussian |
| 1        | 9.96 | 14.30 | 11.51  | 8.88     |
| 2        | 3.45 | 2.45  | 2.45   | 2.67     |
| 3        | 1.12 | 0.22  | 0.32   | 0.74     |
| 4        | 0.22 | 0.01  | 0.04   | 0.25     |
| 5        | 0.05 | 0.00  | 0.00   | 0.07     |

UA2 4-jet analysis (at 630 GeV): with ansatz  $\sigma_{DPS} = \frac{1}{2} \frac{\sigma_{2jet}^2}{\sigma_{eff}}$ limit  $\sigma_{eff} > 8.3$  mb at 95% CL i.e.  $\sigma_{DPS} < 4.5$  in 'AFS units' ... but best value  $2.5 \pm 1$  CDF 4-jet analysis (at 1800 GeV):  $\sigma_{\rm eff} = 12.1^{+10.7}_{-5.4}~{\rm mb}$ 





- Plot shows the "Transverse" <Nchg> versus P<sub>T</sub>(chgjet#1) compared to the the QCD hard scattering predictions of Herwig 5.9, Isajet 7.32, and Pythia 6.115 (default parameters with P<sub>T</sub>(hard)>3 GeV/c).
- Only charged particles with  $|\eta| < 1$  and  $P_T > 0.5$  GeV are included and the QCD Monte-Carlo predictions have been corrected for efficiency.



- Comparison of the dijet and the Z-boson data on the average number of charged particles ( $P_T > 0.5$  GeV,  $|\eta| < 1$ ) for the "transverse" region.
- The plot shows the QCD Monte-Carlo predictions of PYTHIA 6.115 (default parameters with P<sub>T</sub>(hard)>3 GeV/c) for dijet (dashed) and "Z-jet" (solid) production.



CERN July 31, 2003



Compares the average "transverse" charge particle density ( $|\eta| < 1$ ,  $P_T > 0.5$  GeV) versus  $P_T$ (charged jet#1) and the  $P_T$  distribution of the "transverse" density,  $dN_{chg}/d\eta d\phi dP_T$  with the QCD Monte-Carlo predictions of two tuned versions of PYTHIA 6.206 ( $P_T$ (hard) > 0, CTEQ5L, Set B (PARP(67)=1) and Set A (PARP(67)=4)).

MC Tools for the LHC CERN July 31, 2003 Rick Field - Florida/CDF



- Shows the average charged particle density, dN<sub>chg</sub>/dηdφ, in the "transverse" region (p<sub>T</sub> > 0.5 GeV/c, |η| < 1) versus E<sub>T</sub>(jet#1) for "Leading Jet" and "Back-to-Back" events.
- Compares the (*uncorrected*) data with **PYTHIA Tune A** and **HERWIG** after CDFSIM.

KITP Collider Workshop February 17, 2004 Rick Field - Florida/CDF


KITP Collider Workshop



Look at the <p<sub>T</sub>> of particles in the "transverse" region (p<sub>T</sub> > 0.5 GeV/c, |η| < 1) versus the number of particles in the "transverse" region: <p<sub>T</sub>> vs N<sub>chg</sub>.

Shows <p<sub>T</sub>> versus N<sub>chg</sub> in the "transverse" region (p<sub>T</sub> > 0.5 GeV/c, |η| < 1) for "Leading Jet" and "Back-to-Back" events with 30 < E<sub>T</sub>(jet#1) < 70 GeV compared with "min-bias" collisions.

KITP Collider Workshop February 17, 2004



Shows the data on the Δφ dependence of the "associated" charged PTsum density, dPTsum/dηdφ, for charged particles (p<sub>T</sub> > 0.5 GeV/c, |η| < 1, not including PTmax) relative to PTmax (rotated to 180°) for "min-bias" events with PTmax > 0.5 GeV/c and PTmax > 2.0 GeV/c compared with PYTHIA Tune A (after CDFSIM).

PYTHIA Tune A predicts a larger correlation than is seen in the "min-bias" data (*i.e.* Tune A "min-bias" is a bit too "jetty").

KITP Collider Workshop February 17, 2004



KITP Collider Workshop

#### **PYTHIA Tune A vs JIMMY: "Transverse Region"** "MAX/MIN Transverse" PTsum Density: dPT/dndo "Transverse" PTsum Density: dPT/dndo 2.5 3.0 PYTHIA Tune A 1.96 TeV-Max Transverse CDF Preliminary "MAX" Density 2.5 2.0 data uncorrected generator level theory + CDFSIM PYA = dashed Leading Jet JM = solid



- (*left*) Run 2 data for charged *scalar* PTsum density ( $|\eta| < 1$ ,  $p_T > 0.5$  GeV/c) in the MAX/MIN/AVE "transverse" region versus P<sub>T</sub>(jet#1) compared with PYTHIA Tune A (after CDFSIM).
- (right) Shows the generator level predictions of PYTHIA Tune A (dashed) and JIMMY (P<sub>T</sub>min=1.8 GeV/c) for charged *scalar* PTsum density ( $|\eta| < 1$ , p<sub>T</sub>>0.5 GeV/c) in the MAX/MIN/AVE "transverse" region versus P<sub>T</sub>(jet#1).
- The tuned JIMMY now agrees with PYTHIA for  $P_T(jet#1) < 100$  GeV but produces much more activity than PYTHIA Tune A (and the data?) in the "transverse" region for  $P_T(jet#1) > 100 \text{ GeV}!$

| Comments                                     | PYTHIA6.2 -<br>Default                                | ATLAS – TDR<br>(PYTHIA5.7) CDF – Tune A<br>(PYTHIA6.206)                                        |                                                                                  | PYTHIA6.214 -<br>Tuned                                                 |  |
|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
| Generated processes<br>(QCD + low-pT)        | Non-diffractive inelastic<br>(MSEL=1)                 | Non-diffractive inelastic<br>(MSEL=1)                                                           | Non-diffractive inelastic +<br>double diffraction<br>(MSEL=0, ISUB 94<br>and 95) | Non-diffractive +<br>double diffraction<br>(MSEL=0, ISUB 94<br>and 95) |  |
| p.d.f.                                       | CTEQ 5L<br>(MSTP(51)=7)                               | CTEQ 2L CTEQ 5L<br>(MSTP(51)=9) (MSTP(51)=7)                                                    |                                                                                  | CTEQ 5L<br>(MSTP(51)=7)                                                |  |
| Multiple interactions<br>models              | MSTP(81) = 1<br>MSTP(82) = 1                          | MSTP(81) = 1<br>MSTP(82) = 4                                                                    | MSTP(81) = 1<br>MSTP(82) = 4                                                     | MSTP(81) = 1<br>MSTP(82) = 4                                           |  |
| pT min                                       | PARP(82) = 1.9<br>PARP(89) = 1 TeV<br>PARP(90) = 0.16 | PARP(82) = 1.55<br>no energy depend.<br>PARP(82) = 2.0<br>PARP(89) = 1.8 TeV<br>PARP(90) = 0.25 |                                                                                  | PARP(82) = 1.8<br>PARP(89) = 1 TeV<br>PARP(90) = 0.16                  |  |
| Core radius                                  | 20% of the hadron radius<br>(PARP(84) = 0.2)          | 20% of the hadron radius<br>(PARP(84) = 0.2)                                                    | 40% of the hadron radius<br>(PARP(84) = 0.4)                                     | 50% of the hadron<br>radius<br>(PARP(84) = 0.5)                        |  |
| Gluon production<br>mechanism                | PARP(85) = 0.33<br>PARP(86) = 0.66                    | PARP(85) = 0.33<br>PARP(86) = 0.66                                                              | PARP(85) = 0.9<br>PARP(86) = 0.95                                                | PARP(85) = 0.33<br>PARP(86) = 0.66                                     |  |
| $\boldsymbol{\alpha}_{\!_{S}}$ and K-factors | MSTP(2) = 1<br>MSTP(33) = 0                           | MSTP(2) = 2<br>MSTP(33) = 3                                                                     | MSTP(2) = 1<br>MSTP(33) = 0                                                      | MSTP(2) = 1<br>MSTP(33) = 0                                            |  |
| Regulating initial state radiation           | PARP(67) = 1                                          | PARP(67) = 4                                                                                    | PARP(67) = 4                                                                     | PARP(67) = 1                                                           |  |



Tunings for min-bias and the UE

ATLAS-SW, 18<sup>th</sup> February 2004

LHC predictions: pp collisions at  $\sqrt{s}$  = 14 TeV



#### LHC predictions: JIMMY4.1 Tunings A and B vs. PYTHIA6.214 – ATLAS Tuning (DC2)









The structure of an event

Multiple interactions

#### The $p_\perp$ -based philosophy

 $p_\perp\text{-}ordered$  showers

Interleaved interactions

Outlook

#### The need for an ordering variable

Structure of incoming hadrons is  $Q^2$  dependent — the DGLAP equations:



Structure at Q is resolved at a time  $t \sim 1/Q$  before collision

Normal DGLAP is defined for  $f_i(x, Q^2)$  of *single* parton; for multiple interactions we need  $f_{i_1i_2...}(x_1, Q_1^2; x_2Q_2^2; ...)$ 

Could be addressed by forwards evolution:

pick a complete partonic set at low  $Q_0$  and evolve, see what happens. Inefficient:

have to evolve and check for *all* potential collisions, but 99.9...% inert
 impossible to steer the production e.g. of a narrow resonance (Higgs)

Backwards evolution

— start at hard interaction and trace what happened "before" — viable and  $\sim$ equivalent *but* now **competition**:



at smaller  $Q^2$  can reconstruct back to either of



Need to agree on common definition of ordering ("time") variable!

#### Ordering variables in final-state radiation

PYTHIA:  $Q^2 = m^2$  HERWIG:  $Q^2 \sim E^2 \theta^2$  ARIADNE:  $Q^2 = p_{\perp}^2$ 



large mass first  $\Rightarrow$  "hardness" ordered coherence brute force covers phase space ME merging simple  $g \rightarrow q\overline{q}$  simple not Lorentz invariant no stop/restart ISR:  $m^2 \rightarrow -m^2$  large angle first  $\Rightarrow$  hardness not ordered coherence inherent gaps in coverage ME merging messy  $g \rightarrow q\overline{q}$  simple not Lorentz invariant no stop/restart ISR:  $\theta \rightarrow \theta$ 

· Y



large  $p_{\perp}$  first  $\Rightarrow$  "hardness" ordered coherence inherent

covers phase space ME merging simple  $g \rightarrow q\overline{q}$  messy Lorentz invariant can stop/restart ISR: more messy

# Why is transverse momentum a good choice?

• The natural scale for  $2 \rightarrow 2$  QCD processes



- Screening inside incoming hadrons  $\Rightarrow p_{\perp}$  cutoff
- Allowed, reasonable choice for FSR and ISR
- Coherence in FSR, partly also in ISR
- Scale choice α<sub>s</sub>(p<sup>2</sup><sub>⊥</sub>) for ISR/FSR is optimal (absorbs singular ln z, ln(1 − z) terms in NLO splitting kernels) ⇒ lower cutoff of showers is in p<sub>⊥</sub>
- Formation time for radiation  $\Delta t \sim \frac{E}{p_{\perp}^2} \sim \frac{\gamma}{p_{\perp}} \gtrsim 1/p_{\perp}$
- No alternative??





The structure of an event

Multiple interactions

The  $p_\perp\text{-based}$  philosophy

#### $p_\perp$ -ordered showers

Interleaved interactions

Outlook

# Objective

# Incorporate several of the good points of the dipole formalism (like ARIADNE) within the shower approach ( $\Rightarrow$ hybrid)

- $\pm$  explore alternative  $p_{\perp}$  definitions
- $+ p_{\perp} \text{ ordering} \Rightarrow \text{coherence inherent}$
- + ME merging works as before (unique  $p_{\perp}^2 \leftrightarrow Q^2$  mapping; same z)
- $+ g \rightarrow q\overline{q}$  natural
- + kinematics constructed after each branching (partons explicitly on-shell until they branch)
- + showers can be stopped and restarted at given  $p_{\perp}$  scale (not yet worked-out for ISR+FSR)
- $+ \Rightarrow$  well suited for ME/PS matching (L-CKKW, real+fictitious showers)
- $+ \Rightarrow$  well suited for simple match with 2  $\rightarrow$  2 hard processes
- ++ well suited for *interleaved multiple interactions*

# Simple kinematics

Consider branching  $a \to bc$  in lightcone coordinates  $p^{\pm} = E \pm p_z$ 

$$p_{b}^{+} = z p_{a}^{+} p_{c}^{+} = (1-z) p_{a}^{+} p^{-} \text{ conservation}$$
  $\implies m_{a}^{2} = \frac{m_{b}^{2} + p_{\perp}^{2}}{z} + \frac{m_{c}^{2} + p_{\perp}^{2}}{1-z}$ 



Guideline, not final  $p_{\perp}$ !

# General Strategy (1)

1) Define 
$$p_{\perp evol}^2 = z(1-z)Q^2 = z(1-z)m^2$$
 for FSR  
 $p_{\perp evol}^2 = (1-z)Q^2 = (1-z)(-m^2)$  for ISR

2) Find list of *radiators* = partons that can radiate.

*Evolve* them all *downwards* in  $p_{\perp evol}$  from common  $p_{\perp max}$ 



3) Derive  $Q^2 = p_{\perp evol}^2 / z(1-z)$  for FSR  $Q^2 = p_{\perp evol}^2 / (1-z)$  for ISR

# General Strategy (2)

4) Find recoiler = parton to take recoil when radiator is pushed off-shell usually nearest colour neighbour for FSR incoming parton on other side of event for ISR

2

5) Interpret z as energy fraction (not lightcone) in radiator+recoiler rest frame for FSR, in mother-of-radiator+recoiler rest frame for ISR, so that Lorentz invariant  $(2E_i/E_{cm} = 1 - m_{ik}^2/E_{cm}^2)$ 

and straightforward match to matrix elements

6) Do *kinematics* based on  $Q^2$  and z,

- a) assuming yet unbranched partons on-shell
- b) shuffling energy-momentum from recoiler as required
- 7) Continue evolution of all radiators from recently picked  $p_{\perp evol}$ . *Iterate* until no branching above  $p_{\perp min}$ .
  - $\Rightarrow$  One combined sequence  $p_{\perp max} > p_{\perp 1} > p_{\perp 2} > \ldots > p_{\perp min}$ .

### Testing the FSR algorithm

Tune performed by Gerald Rudolph (Innsbruck) based on ALEPH 1992+93 data:



# Quality of fit

|                                       |         | $\sum \chi^2$ of model |           |  |
|---------------------------------------|---------|------------------------|-----------|--|
| Distribution                          | nb.of   | P <del>7</del> 6.3     | PY6.1     |  |
| of                                    | interv. | $p_\perp$ -ord.        | mass-ord. |  |
| Sphericity                            | 23      | 25                     | 16        |  |
| Aplanarity                            | 16      | 23                     | 168       |  |
| 1-Thrust                              | 21      | 60                     | 8         |  |
| Thrust <sub>minor</sub>               | 18      | 26                     | 139       |  |
| jet res. $y_3(D)$                     | 20      | 10                     | 22        |  |
| $x = 2p/E_{\rm cm}$                   | 46      | 207                    | 151       |  |
| $p_{\perp {\sf in}}$                  | 25      | 99                     | 170       |  |
| $p_{\perp {\sf out}} < {\sf 0.7~GeV}$ | 7       | 29                     | 24        |  |
| $p_{\perp out}$                       | (19)    | (590)                  | (1560)    |  |
| <i>x</i> (B)                          | 19      | 20                     | 68        |  |
| sum $N_{dof} =$                       | 190     | 497                    | 765       |  |

Generator is not assumed to be perfect, so add fraction p of value in quadrature to the definition of the error:

|                 | p             | 0%             | 0.5%      | 1%      |                    |
|-----------------|---------------|----------------|-----------|---------|--------------------|
|                 | $\sum \chi^2$ | 523            | 364       | 234     |                    |
| for $N_{dof} =$ | 196 🚔         | > gene         | erator is | 'correc | ct' to ${\sim}1\%$ |
| except p        | $\perp$ out > | • 0.7 <b>(</b> | GeV (10   | %–20%   | % error)           |

# Testing the ISR algorithm



... but so far no showstoppers

# Combining FSR with ISR

Evolution of timelike sidebranch cascades can reduce  $p_{\perp}$ :







The structure of an event

Multiple interactions

The  $p_{\perp}$ -based philosophy

 $p_\perp\text{-}ordered$  showers

Backup  $p_{\perp}$ -ordered showers

Interleaved interactions

Outlook

# The FSR algorithm

1) Find radiators and recoilers from initial list of on-shell partons



- g: counts twice, half for each recoiler; both  $g \rightarrow gg$  and  $g \rightarrow q\overline{q}$
- q: one recoiler for  $\mathbf{q}\to\mathbf{q}\mathbf{g},$  another recoiler for  $\mathbf{q}\to\mathbf{q}\gamma$

top decay (e.g.) colour recoiler  $\neq$  colour partner (should not change top mass)

2) Evolve all radiators downwards from common p⊥max. Pick the one that branches at the largest actual p⊥evol.
a) Massive quarks: p<sup>2</sup><sub>⊥evol</sub> = z(1 - z)(m<sup>2</sup> - m<sup>2</sup><sub>0</sub>).
b) z<sub>min</sub>(p<sup>2</sup><sub>⊥evol</sub>, ŝ) < z < z<sub>max</sub>(p<sup>2</sup><sub>⊥evol</sub>, ŝ) with ŝ = (p<sub>rad</sub> + p<sub>rec</sub>)<sup>2</sup>.
c) Matrix-element merging by veto for many SM+MSSM decays. 3) Construct kinematics of branching:

a) Boost radiator+recoiler to their rest frame; radiator along +z axis m = 0 $E = \frac{\sqrt{\hat{s}}}{2}$ recoilerm = 0 $E = \frac{\sqrt{\hat{s}}}{2}$ 



since now z energy fraction, not lightcone

(so that simpler merging matrix elements).

- c)  $\varphi$  angle nonisotropic by g polarization.
- d) Rotate and boost back.
- 4) Continue evolution of all radiators from recently picked  $p_{\perp evol}$ . Iterate until no branching above  $p_{\perp min}$ .
  - $\Rightarrow$  One combined sequence  $p_{\perp max} > p_{\perp 1} > p_{\perp 2} > \ldots > p_{\perp min}$ .

#### Transverse momentum definition(s)

Consider two massless particles,  $E_1 = |\mathbf{p}_1|$  and  $E_2 = |\mathbf{p}_2|$ :

$$p_{\perp} = \frac{|\mathbf{p}_{\perp} \times \mathbf{p}_{2}|}{|\mathbf{p}_{\perp} + \mathbf{p}_{2}|}$$

$$p_{\perp} = \frac{|\mathbf{p}_{1} \times \mathbf{p}_{2}|}{\sqrt{E_{1}^{2} + E_{2}^{2} + 2E_{1}E_{2}\cos\theta}}$$

$$p_{\perp} \rightarrow 0 \text{ for } \theta \rightarrow \pi \text{ (unless } E_{1} = E_{2}\text{)}$$

$$p_{\perp} \rightarrow \frac{\mathbf{p}_{2}}{\mathbf{p}_{1}} = \frac{\mathbf{p}_{1} + \mathbf{p}_{2}}{\mathbf{p}_{1}} \quad \text{even though } m^{2} \text{ large, so}$$

$$p_{\perp} = \frac{\mathbf{p}_{1} + \mathbf{p}_{2}}{\mathbf{p}_{1}} \quad \text{even though } m^{2} \text{ large, so}$$

$$p_{\perp} = \frac{|\mathbf{p}_{1} \times \mathbf{p}_{\perp}|}{|\mathbf{p}_{1} + \mathbf{p}_{2}|} \approx \frac{E_{1}E_{2}2\sin(\theta/2)}{E_{1} + E_{2}} \equiv p_{\perp \perp}$$

$$p_{\perp} = \frac{|\mathbf{p}_{1} \times \mathbf{p}_{2}|}{|\mathbf{p}_{1} + \mathbf{p}_{2}|} \approx \frac{E_{1}E_{2}2\sin(\theta/2)}{E_{1} + E_{2}} \equiv p_{\perp \perp}$$

$$p_{\perp}^{2} = \frac{E_{1}}{E_{1} + E_{2}} \frac{E_{2}}{E_{1} + E_{2}} 2E_{1}E_{2}(1 - \cos\theta) = z(1 - z)m^{2} = p_{\perp \text{evol}}^{2}$$

(in rest frame of dipole; not normally the case in LUCLUS/PYCLUS)

Durham clustering algorithm:



$$p_{\perp} = \min(E_1, E_2) \sin \theta$$
  

$$\approx \min(E_1, E_2) 2 \sin(\theta/2) \equiv p_{\perp D}$$
  

$$p_{\perp L} = \frac{\max(E_1, E_2)}{E_1 + E_2} p_{\perp D}$$

**ARIADNE** dipole:







 $z \rightarrow 0 \Leftrightarrow$  hard-gluon tail:  $p_{\perp\Delta}^2 \approx m^2 \gg z \, m^2 \approx p_{\perp\perp}^2$ 

# The ISR algorithm

1) Start with two incoming partons at hard interaction.

- 2) Evolve both radiators downwards from common p<sub>⊥max</sub>. Pick the one that branches at the largest actual p<sub>⊥evol</sub>.
  a) Massive quarks: not yet considered.
- b)  $z_{\min}(p_{\perp evol}^2, \hat{s}, x) < z < z_{\max}(p_{\perp evol}^2, \hat{s})$ with  $\hat{s} = m_{12}^2 = (p_1 + p_2)^2 = x_1 x_2 s$ .
- c) Matrix-element merging by veto for Z/W/H production.
- 3) Construct kinematics of branching:
- a) Boost radiator+recoiler to their rest frame; radiator along  $\pm z$  axis m = 0  $E = \frac{\sqrt{\hat{s}}}{2}$  recoiler m = 0 $E = \frac{\sqrt{\hat{s}}}{2}$



- 4) Continue evolution on both sides from recently picked  $p_{\perp evol}$ . Iterate until no branching above  $p_{\perp min}$ .
  - $\Rightarrow$  One combined sequence  $p_{\perp max} > p_{\perp 1} > p_{\perp 2} > \ldots > p_{\perp min}$ .

#### Transverse momentum definition(s)

Study kinematics of  $3 \rightarrow 1 + 4$  in rest frame of 3 + 2:



![](_page_67_Picture_0.jpeg)

![](_page_67_Picture_1.jpeg)

The structure of an event

Multiple interactions

The  $p_{\perp}$ -based philosophy

 $p_\perp\text{-}ordered$  showers

#### **Interleaved interactions**

Outlook

#### **Interleaved Multiple Interactions**

![](_page_68_Figure_1.jpeg)

# Competition

"Evolution" equation, only Multiple Interactions:

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} = \frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}} \exp\left(-\int_{p_{\perp}}^{p_{\perp i-1}} \frac{\mathrm{d}\mathcal{P}_{\mathrm{MI}}}{\mathrm{d}p_{\perp}'} \mathrm{d}p_{\perp}'\right)$$

Evolution equation, only Initial State Radiation:

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} = \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}} \, \exp\left(-\int_{p_{\perp}}^{p_{\perp i-1}} \frac{\mathrm{d}\mathcal{P}_{\mathrm{ISR}}}{\mathrm{d}p_{\perp}'} \mathrm{d}p_{\perp}'\right)$$

Evolution equation, MI + ISR, with competition for PDF and phase space:

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}p_{\perp}} = \left(\frac{\mathrm{d}\mathcal{P}_{\mathsf{MI}}}{\mathrm{d}p_{\perp}} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathsf{ISR}}}{\mathrm{d}p_{\perp}}\right) \exp\left(-\int_{p_{\perp}}^{p_{\perp i-1}} \left(\frac{\mathrm{d}\mathcal{P}_{\mathsf{MI}}}{\mathrm{d}p_{\perp}'} + \sum \frac{\mathrm{d}\mathcal{P}_{\mathsf{ISR}}}{\mathrm{d}p_{\perp}'}\right) \mathrm{d}p_{\perp}'\right)$$

with ISR sum running over all previous MI

⇒ one interleaved sequence of MI and ISRFSR: no competition so not required (but nice for ME merging)

# **Initiators and Remnants**

![](_page_70_Figure_1.jpeg)

#### • PDF after preceding MI/ISR activity:

0) Squeeze range 0 < x < 1 into  $0 < x < 1 - \sum x_i$  (ISR:  $i \neq i_{current}$ )

1) Valence quarks: scale down by number already kicked out

- 2) Introduce companion quark  $q/\overline{q}$  to each kicked-out sea quark  $\overline{q}/q$ , with x based on assumed  $g \rightarrow q\overline{q}$  splitting
- 3) Gluon and other sea: rescale for total momentum conservation

### Various issues

• Regularization procedure:

$$\alpha_{\rm S}(p_{\perp}^2) \frac{{\rm d} p_{\perp}^2}{p_{\perp}^2} \rightarrow \alpha_{\rm S}(p_{\perp 0}^2 + p_{\perp}^2) \frac{{\rm d} p_{\perp}^2}{p_{\perp 0}^2 + p_{\perp}^2}$$

common for MI (quadratically) and ISR by colour neutralization  $p_{\perp 0} \approx$  2–3 GeV energy-dependent

• Intertwined interactions:

![](_page_71_Figure_5.jpeg)

Not (yet) explicitly included, but estimated; shown not to be critical
### • Energy dependence of $p_{\perp \min}$ and $p_{\perp 0}$



Larger collision energy  $\Rightarrow$  probe parton ( $\approx$  gluon) density at smaller x $\Rightarrow$  smaller colour screening length d $\Rightarrow$  larger  $p_{\perp \min}$  or  $p_{\perp 0}$ **Post-HERA PDF fits** steeper at small x $\Rightarrow$  stronger energy dependence

Current PYTHIA default (Tune A, old model), tied to CTEQ 5L, is

$$p_{\perp \min}(s) = 2.0 \text{ GeV} \left(\frac{s}{(1.8 \text{ TeV})^2}\right)^{0.08}$$

Where does the baryon number go?
 Junction "carries" baryon number!
 Motion determined by colour flow attached to it.
 Messy hadronization (but handled with model)

# $p \leftarrow p$





- long strings to remnants  $\Rightarrow$  much  $n_{ch}$ /interaction  $\Rightarrow$  few interactions  $\Rightarrow$  little  $p_{\perp pert}$   $\Rightarrow \langle p_{\perp} \rangle (n_{ch}) \sim$  flat short strings (more central)
- $\Rightarrow$  less  $n_{\rm Ch}$ /interaction
- $\Rightarrow$  more interactions
- $\Rightarrow$  more  $p_{\perp pert}$
- $\Rightarrow \langle p_{\perp} 
  angle (n_{\mathsf{Ch}})$  rising

### Colour correlations

# Data comparisons

usually comparable with Tune A (for better or worse), but still in need of good tuning and detailed tests, and ...  $(n_{ch})$  problematical (need very short string!)



colour correlations not yet understood!







Multiple interactions

The  $p_{\perp}$ -based philosophy

 $p_\perp$ -ordered showers

Interleaved interactions



## Outlook

# How to make progress?

The new MI/ISR/FSR scenario is available in PYTHIA  $\geq$ 6.312, but is not the end of the road: Need model building  $\Leftrightarrow$  experimental tests

Need reference samples over wide energy range:

- $\bullet \sim 20$  GeV: fixed target
  - $\sim$  63 GeV: ISR
- $\sim 200 \text{ GeV: } \text{SppS}, |\text{RHIC}|$
- $\sim$  630 GeV: SppS, Tevatron

•  $\sim$  2 TeV: Tevatron

Need corrected and reliable distributions of:

- global quantities:  $n_{ch}$
- single-particle spectra: y and  $p_{\perp}$
- correlations:  $y, p_{\perp}, \varphi, \langle p_{\perp} \rangle (n_{\rm Ch})$
- jet and minijet properties:  $n_{\text{minijet}}(E_{\perp \text{jet}})$ , jet profile and pedestal
  - rapidity gap size and position
  - other interesting properties?

Need it all in a form usable to outsiders  $\implies$  JetWeb?

LHC predictions: pp collisions at  $\sqrt{s}$  = 14 TeV



## LHC predictions: JIMMY4.1 Tunings A and B vs. PYTHIA6.214 – ATLAS Tuning (DC2)



# Outlook

Multiple interactions concept compelling; it *has to* exist at some level.
 By now, strong direct evidence, overwhelming indirect evidence

**\*** Understanding of multiple interactions crucial for LHC precision physics

\* Many details uncertain

- $p_{\perp \min}/p_{\perp 0}$  cut-off
- impact parameter picture
  - energy dependence
- multiparton densities in incoming hadron
- colour correlations between scatterings
  - interferences between showers

• . . .

 $\star$  Above physics aspects must all be present, and more?

If a model is simple, it is wrong!

So stay tuned for even more complicated models in the future....