PYTHIA 8 — The First Release

Torbjörn Sjöstrand
CERN/PH and
Department of Theoretical Physics, Lund University

PYTHIA 8.040 released on 20 July 2005
Available on Pythia webpage
http://www.thep.lu.se/~torbjorn/Pythia.html
clicking on the “Future” link in the index

What is in it?
On To C++

Currently HERWIG and PYTHIA are successfully being used, also in new LHC environments, using C++ wrappers

A1: Need to clean up!

Q: Why rewrite?

A2: Fortran 77 is limiting Fortran 90

A3: Young experimentalists will expect C++

PYTHIA7 project \Rightarrow ThePEG

Toolkit for High Energy Physics Event Generation

(L. Lönnblad; S. Gieseke, A. Ribon, P. Richardson)

HERWIG++: complete reimplementation

(B.R. Webber; S. Gieseke, A. Ribon, P. Richardson, M. Seymour, P. Stephens, 3 new)

ARIADNE/LDC: to do ISR/FSR showers, multiple interactions

(L. Lönnblad; N. Lavesson)

SHERPA: in C++ from start, partly wrappers to PYTHIA Fortran

(F. Krauss; T. Gleisberg, S. Hoeche, A. Schaelicke, S. Schumann, J. Winter)
PYTHIA8: A fresh start

Problem: PYTHIA7 stalled, no other manpower
Solution?: take a sabbatical and work “full-time”!
(⇒ baseline model, S. Mrenna & P. Skands join later ?)

Tentative schedule:

<table>
<thead>
<tr>
<th>time</th>
<th>date</th>
<th>processes</th>
<th>final states</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 Sept. 2004</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>1 Sept. 2005</td>
<td>LHA-style input</td>
<td>incomplete draft</td>
</tr>
<tr>
<td>2</td>
<td>1 Sept. 2006</td>
<td>a few processes</td>
<td>complete, buggy(?)</td>
</tr>
<tr>
<td>3</td>
<td>1 Sept. 2007</td>
<td>more processes</td>
<td>stable, debugged</td>
</tr>
</tbody>
</table>

…but don’t forget Murphy’s law

Objectives:

- clean up, keep the most recent models
- Les Houches Accord style input central
- independent of ThePEG (or anything else), but
- interface to ThePEG later written by L. Lönnblad (?)
Current PYTHIA8 structure

The User (≈ Main Program)

Pythia

Event process

Event event

ProcessLevel

LHAinit
LHAevent
(PYTHIA 6.3)
(...??)

PartonLevel

TimeShower
SpaceShower
MultipleInteractions
BeamRemnants

HadronLevel

StringFragmentation
MiniStringFrag...
ParticleDecays
(...??)

BeamParticle

Vec4, Random, Settings, ParticleData, StandardModel, ...
Current PYTHIA8 status

Existing classes

<table>
<thead>
<tr>
<th>Process Level</th>
<th>Parton Level</th>
<th>Hadron Level</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHAInit</td>
<td>TimeShower</td>
<td>StringFragmentation</td>
<td>Event</td>
</tr>
<tr>
<td>LHAevtnt</td>
<td>SpaceShower</td>
<td>MiniStringFrag...</td>
<td>BeamParticle</td>
</tr>
<tr>
<td>(PYTHIA 6.3)</td>
<td>MultipleInteractions</td>
<td>ParticleDecays</td>
<td>Vec4, Random</td>
</tr>
</tbody>
</table>

Missing classes/topics

- Cross section administration
- Phase space selection
- Process matrix elements
- Parton density libraries
- Resonance decays
- ThePEG input (?)
- MI/ISR/FSR interleaving
- colour flow models
- ME/PS matching
- Popcorn baryons
- updated decay tables
- Bose-Einstein
- event analysis routines
- ...and much, much more
Distribution

Contents of Pythia 8.040 distribution:

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction (.pdf)</td>
<td>20 pp</td>
</tr>
<tr>
<td>24</td>
<td>Header files (.h)</td>
<td>3,850 lines</td>
</tr>
<tr>
<td>22</td>
<td>Code files (.cc)</td>
<td>14,750 lines</td>
</tr>
<tr>
<td>1</td>
<td>PYTHIA 6.3 file (.f)</td>
<td>71,500 lines</td>
</tr>
<tr>
<td>25</td>
<td>Documentation files (.man)</td>
<td>4,700 lines</td>
</tr>
<tr>
<td>5</td>
<td>Sample main programs (.cc)</td>
<td>870 lines</td>
</tr>
<tr>
<td>3</td>
<td>Input to above</td>
<td>1,380 lines</td>
</tr>
<tr>
<td>1</td>
<td>Makefile</td>
<td>150 lines</td>
</tr>
<tr>
<td>1</td>
<td>pythia8040.tar.gz (all)</td>
<td>1 MB</td>
</tr>
</tbody>
</table>

To get going: download ⇒ gunzip ⇒ tar xvf
⇒ make ⇒ run test programs(s)

Self-contained, but hooks to external programs for
- hard processes, Les Houches Accord style
- parton distribution functions
- decays (of some particles, e.g. τ, B^0, B^+)
- random number generators (shared with other programs)
Event generation structure

1) Initialization step
 - select process(es) to study
 - modify physics parameters
 - set kinematics constraints
 - modify generator settings
 - initialize generator
 - book histograms

   ```
   #include "Pythia.h"
   using namespace Pythia8;
   Pythia pythia;
   pythia.readString("command");
   pythia.readFile("command.file");
   pythia.init(idBeamA,idBeamB,eCM);
   ```

2) Generation loop
 - generate one event at a time
 - analyze it (or store for later)
 - add results to histograms
 - print a few events

   ```
   pythia.next();
   pythia.process.list();
   pythia.event.list();
   int id = pythia.event[i].id();
   ```

3) Finishing step
 - print deduced cross-sections
 - print/save histograms etc.

   ```
   pythia.statistics();
   pythia.settings.listChanged();
   ```
Example of a main program

// Test program main06: study pTZ spectrum at the Tevatron.
#include "Pythia.h"
using namespace Pythia8;
int main() {
 Pythia pythia;
 pythia.readString("Pythia6:msel = 11");
 pythia.readString("Pythia6:ckin(1) = 80.");
 pythia.readString("PartonLevel:MI = off");
 pythia.readString("Beams:primordialKTwidth = 2.");
 pythia.init(2212, -2212, 1960.);
 Hist pTZ("dN/dpTZ",100,0.,100.);
 // Begin event loop. Generate event. Skip if error. List first few.
 for (int iEvent = 0; iEvent < 10000; ++iEvent) {
 if (!pythia.next()) continue;
 if (iEvent < 2) pythia.event.list();
 // Loop over particles in event. Find last Z0 copy. Fill its pT.
 int iZ = 0;
 for (int i = 0; i < pythia.event.size(); ++i)
 if (pythia.event[i].id() == 23) iZ = i;
 pTZ.fill(pythia.event[iZ].pT());
 }
 pythia.statistics();
 cout << pTZ;
 return 0;
}
Outlook

• C++ PYTHIA 8 is coming along •
 ★ Roughly according to three-year plan so far! ★
 ★ ~ 1 sub-subversion per working week (backup) ★
 ★ Slowdown during autumn, then pick up again early 2006 ★
 ★ Release latest sub-subversion every 2–3 months ★
 ★ First useful — but incomplete — version in a year’s time (?) ★
 ★ First production-quality release, 8.100, early 2007 (?) ★
 ★ Debugged and tuned by LHC startup (?) ★
 ★ Overtaking Fortran version usage by 2008–2009 (???) ★

• Early feedback is most welcome •
 ★ Now is the time for any major course changes ★
 ★ In a year’s time the structure will be frozen (?) ★