Status and Plans for PYTHIA 8

Torbjörn Sjöstrand
CERN/PH and
Department of Theoretical Physics, Lund University
PYTHIA 6 status

PYTHIA 6 still being actively developed and maintained:
- multiple interactions and underlying event, with
- transverse-momentum-ordered showers
- SUSY interfaces (SLHA) and simulation
- regular bug fixes and minor improvements
- plan to move to CEDAR HepForge (code management, bugtracking)

Currently PYTHIA 6.402:
- 73,600 lines of code (including comments/blanks)
- 580 page PYTHIA 6.4 Physics and Manual
 T. Sjöstrand, S. Mrenna and P. Skands,
- available on http://www.thep.lu.se/~torbjorn/Pythia.html
 together with sample main programs, old code, etc.

...but
- only add, never subtract
- has become bloated and unmanageable
- is in Fortran 77, so not understood by young people
PYTHIA 8: A fresh start

Problem: PYTHIA 7 stalled, no other manpower
Solution?: take a sabbatical and work “full-time”!
(⇒ baseline model, S. Mrenna & P. Skands join later ?)

Tentative schedule:

<table>
<thead>
<tr>
<th>time</th>
<th>date</th>
<th>processes</th>
<th>final states</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 Sept. 2004</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>1 Sept. 2005</td>
<td>LHA-style input</td>
<td>incomplete draft</td>
</tr>
<tr>
<td>2</td>
<td>1 Sept. 2006</td>
<td>a few processes</td>
<td>complete, buggy(?)</td>
</tr>
<tr>
<td>3</td>
<td>1 Sept. 2007</td>
<td>more processes</td>
<td>stable, debugged</td>
</tr>
</tbody>
</table>

…but don’t forget Murphy’s law

Objectives:

- clean up, keep the most recent models
- core program completely standalone, but
- Les Houches Accord style input central
- interfaces to other libraries foreseen
Current PYTHIA 8 structure

The User (≈ Main Program)

Pythia

Info

Event process

Event event

ProcessLevel

PartonLevel

HadronLevel

ProcessContainer

PartonLevel

HadronLevel

PhaseSpace

TimeShower

StringFragmentation

LHAinit, LHAevnt

MultipleInteractions

MiniStringFrag...

(PYTHIA 6.4)

BeamRemnants

ParticleDecays

(...??)

BeamParticle

SigmaProcess, SigmaTotal

Vec4, Random, Settings, ParticleData, StandardModel, ...
Event generation structure

1) Initialization step
- select process(es) to study
- modify physics parameters
- set kinematics constraints
- modify generator settings
- initialize generator
- book histograms

```cpp
#include "Pythia.h"
using namespace Pythia8;
Pythia pythia;
pythia.readString("command");
pythia.readFile("filename");
pythia.init(idBeamA,idBeamB,eCM);
```

2) Generation loop
- generate one event at a time
- analyze it (or store for later)
- add results to histograms
- print a few events

```cpp
pythia.next();
pythia.process.list();
pythia.event.list();
int id = pythia.event[i].id();
```

3) Finishing step
- print deduced cross-sections
- print/save histograms etc.

```cpp
pythia.statistics();
pythia.settings.listChanged();
```
Settings and Particle Data

Can read in settings and particle data changes by
- `pythia.readString("command")`
- `pythia.readFile("filename")` with one command per line in file

Settings come in three kinds
- **Flags**: on/off switches, bool
- **Modes**: enumerated options, int
- **Parameters**: continuum of values, double

and command is of form `location:name = value`, e.g.
- `PartonLevel:ISR = off` no initial-state radiation
- `InFlux:nQuark = 4` do not consider b pdf’s
- `TimeShower:pTmin = 1.0` cut off final-state radiation at 1 GeV

To access **particle data**, instead command should be of form
- `id:property = value` or `id:channel:property = value`, e.g.
- `3122:mayDecay = no` do not allow Λ^0 to decay (no = off = false = 0)
- `215:3:products = 211 111 111` to let $a_2^+ \rightarrow \pi^+\pi^0\pi^0$
Hard-process generation

Currently limited selection implemented internally, but can use Fortran PYTHIA 6 library transparently via LHA interface. Provide settings as before, with command of form

\texttt{Pythia6:variable = value}, e.g. \texttt{Pythia6:msel = 6}.

\texttt{variable} can be anything recognized by \texttt{PYGIVE}, but only ones relevant for hard process are actually used.

Can also use Les Houches Accord for any other process, input via runtime Fortran interface or via files.

Overview processes that can be generated:

<table>
<thead>
<tr>
<th>Process</th>
<th>internal</th>
<th>PYTHIA 6</th>
<th>Les Houches</th>
</tr>
</thead>
<tbody>
<tr>
<td>minbias/elastic/diffractive</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>QCD jets (incl. $c\bar{c}$, $b\bar{b}$)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>prompt photons</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>other PYTHIA 6 processes</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>anything else (within limits)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Example of a main program

// Test program main06: study pTZ spectrum at the Tevatron.
#include "Pythia.h"
using namespace Pythia8;
int main() {
 Pythia pythia;
 pythia.readString("Pythia6:msel = 11");
 pythia.readString("Pythia6:ckin(1) = 80.");
 pythia.readString("PartonLevel:MI = off");
 pythia.readString("Beams:primordialKTwidth = 2.");
 pythia.init(2212, -2212, 1960.);
 Hist pTZ("dN/dpTZ",100,0.,100.);
 // Begin event loop. Generate event. Skip if error. List first few.
 for (int iEvent = 0; iEvent < 10000; ++iEvent) {
 if (!pythia.next()) continue;
 if (iEvent < 2) pythia.event.list();
 // Loop over particles in event. Find last Z0 copy. Fill its pT.
 int iZ = 0;
 for (int i = 0; i < pythia.event.size(); ++i)
 if (pythia.event[i].id() == 23) iZ = i;
 pTZ.fill(pythia.event[iZ].pT());
 }
 pythia.statistics();
 cout << pTZ;
 return 0;
}
Outlook

• C++ PYTHIA 8 is coming along •
 ★ Roughly according to three-year plan the first year! ★
 ★ On hold during autumn 2005, now picking up speed again ★
 ★ ~ 1 sub-subversion per working week, currently 8.051 ★
 ★ Put recent versions on web at irregular intervals ★
 ★ First (almost) production-quality release, 8.100, early 2007 (?) ★
 ★ Debugged and tuned by LHC startup (???) ★
 ★ Overtaking Fortran version usage by 2009 (???) ★

• Feedback is most welcome •
 ★ Basic structure is settling down ... ★
 ★ ... but still lot of room for changes ★
 ★ e.g. interfacing to other programs ★

• MC4LHC workshop July 17-26 •
 ★ will contain tutorials, if interest (sign up!) ★
Trying It Out

- Download `pythia8051.tgz` from

 `http://www.thep.lu.se/~torbjorn/Pythia.html`, link “Future”

- Unzip and expand with `tar xvfz pythia8051.tgz`

- Move to the thus created `pythia8051` directory

- Follow the `README` instructions (edit links to PYTHIA 6, HepMC)

- `make` will compile in ~4 minutes (half for PYTHIA 6)

- The `examples` subdirectory contains 14 sample main programs

 `(make mainNN and then mainNN.exe > outfile)`

- The `pythia8051.pdf` file contains an introduction to the program

- Open `doc/Welcome.html` in a web browser for the full manual

 (in the future: GUI with xml + Javascript?)