Status and Plans for PYTHIA 8

Torbjörn Sjöstrand

CERN/PH and
Department of Theoretical Physics, Lund University
PYTHIA 6 status

PYTHIA 6 still being actively developed and maintained:
- multiple interactions and underlying event, with
- transverse-momentum-ordered showers
- SUSY interfaces (SLHA) and simulation
- regular bug fixes and minor improvements
- moving to CEDAR HepForge (code management, bugtracking)

Currently PYTHIA 6.403:
- 73,600 lines of code (including comments/blanks)
- 580 page PYTHIA 6.4 Physics and Manual
 T. Sjöstrand, S. Mrenna and P. Skands,
- available on http://www.thep.lu.se/~torbjorn/Pythia.html
- together with sample main programs, old code, etc.

...but
- only add, never subtract
 ⇒ has become bloated and unmanageable
- is in Fortran 77, so not understood by young people
PYTHIA 8: A fresh start

Problem: PYTHIA 7 stalled, no other manpower
Solution?: take a sabbatical and work “full-time”!
(⇒ baseline model, S. Mrenna & P. Skands join later ?)

Tentative schedule:

<table>
<thead>
<tr>
<th>time</th>
<th>date</th>
<th>processes</th>
<th>final states</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 Sept. 2004</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>1 Sept. 2005</td>
<td>LHA-style input</td>
<td>incomplete draft</td>
</tr>
<tr>
<td>2</td>
<td>1 Sept. 2006</td>
<td>a few processes</td>
<td>complete, buggy(?)</td>
</tr>
<tr>
<td>3</td>
<td>1 Sept. 2007</td>
<td>more processes</td>
<td>stable, debugged</td>
</tr>
</tbody>
</table>

...but don’t forget Murphy’s law

Objectives:

- clean up, keep the most recent models
- core program completely standalone, but
- Les Houches Accord style input central
- interfaces to other libraries foreseen
Current PYTHIA 8 structure

The User (∼ Main Program)

Pythia

Info

Event process

ProcessLevel

ProcessContainer

PhaseSpace

LHAinit, LHAevnt (PYTHIA 6.4)

PartonLevel

TimeShower

SpaceShower

MultipleInteractions

BeamRemnants

HadronLevel

StringFragmentation

MiniStringFrag…

ParticleDecays

(…??)

BeamParticle

SigmaProcess, SigmaTotal

Vec4, Random, Settings, ParticleData, StandardModel, …
Event generation structure

1) Initialization step
- select process(es) to study
- modify physics parameters
- set kinematics constraints
- modify generator settings
- initialize generator
- book histograms

```cpp
#include "Pythia.h"
using namespace Pythia8;
Pythia pythia;
pythia.readString("command");
pythia.readFile("filename");
pythia.init(idBeamA,idBeamB,eCM);
```

2) Generation loop
- generate one event at a time
- analyze it (or store for later)
- add results to histograms
- print a few events

```cpp
pythia.next();
pythia.process.list();
pythia.event.list();
int id = pythia.event[i].id();
```

3) Finishing step
- print deduced cross-sections
- print/save histograms etc.

```cpp
pythia.statistics();
pythia.settings.listChanged();
```
Settings and Particle Data

Can read in settings and particle data changes by

- `pythia.readString("command")`
- `pythia.readFile("filename")` with one `command` per line in file

Settings come in three kinds

- **Flags**: on/off switches, `bool`
- **Modes**: enumerated options, `int`
- **Parameters**: continuum of values, `double`

and **command** is of form `location:name = value`, e.g.

- `PartonLevel:ISR = off` no initial-state radiation
- `InFlux:nQuark = 4` do not consider b pdf’s
- `TimeShower:pTmin = 1.0` cut off final-state radiation at 1 GeV

To access **particle data**, instead **command** should be of form

- `id:property = value` or `id:channel:property = value`, e.g.
- `3122:mayDecay = no` do not allow Λ^0 to decay (no = off = false = 0)
- `215:3:products = 211 111 111` to let \(a_2^+ \rightarrow \pi^+\pi^0\pi^0 \)
Welcome to PYTHIA - The Lund Monte Carlo!

PYTHIA 8 is still at an early stage, and should not be used for any production runs. What is offered here is only a snapshot, to allow interested users to provide feedback on the basic structure. The program is under active development, however, and is intended to replace the existing PYTHIA 6 within the next few years.

Use the left-hand index to navigate in the existing documentation, e.g. to learn which flags, modes and parameters can be set by the user. Also note that there is a separate Brief Introduction (as a pdf file), that offers the best way to get to understand the basic structure of PYTHIA 8. The current pages offer the more detailed picture, with the corresponding danger of then losing overview.

The complete PYTHIA 6.4 Physics and Manual, published in
T. Sjöstrand, S. Mrenna and P. Skands, JHEP05 (2006) 026,
in detail describes the physics (partly) implemented also in PYTHIA 8. It therefore is the main reference that you should quote, whether you use PYTHIA 6 or PYTHIA 8.

Main author:
Torbjörn Sjöstrand
CERN/PH, CH-1211 Geneva, Switzerland, and
Department of Theoretical Physics, Lund University, Lund, Sweden
phone: +46 - 22 - 767 82 27
e-mail: torbjorn@thep.lu.se

Author:
Stephen Mrenna
Computing Division, Simulations Group
Fermi National Accelerator Laboratory
MS 234, Batavia, IL 60510, USA
phone: +1 - 630 - 840 - 2556
e-mail: mrenna@fnal.gov

Author:
Peter Skands
Example: timelike parton showers

Main variables

The amount of QCD radiation in the shower is determined by

```
parameter name="TimeShower:alphaValue" default="0.1265" min="0.06" max="0.25"
```

The alpha_strong value at scale M_Z^2. The default value corresponds to the one tuned to LEP data (using a first-order running), so should be taken rather seriously [Rud04].

The actual value is then regulated by the running to the scale pT^2, at which the shower evaluates alpha_strong

```
mode name="TimeShower:alphaOrder" default="1" min="0" max="2"
```

Order at which alpha_strong runs.

- option value="0": zeroth order, i.e. alpha_strong is kept fixed.
- option value="1": first order, which is the normal value.
- option value="2": second order. Since other parts of the code do not go to second order there is no strong reason to use this option, but there is also nothing wrong with it.

QED radiation is currently regulated by StandardModel:alphaEMfix, since no QED running is implemented in the shower.

The rate of radiation if divergent in the $pT \to 0$ limit. Here, however, perturbation theory is expected to break down. Therefore an effective pT_{min} cutoff parameter is introduced, below which no emissions are allowed. The cutoff may be different for QCD and QED radiation off quarks, and is mainly a technical parameter for QED radiation off leptons.

```
parameter name="TimeShower:pTmin" default="0.5" min="0.1" max="2.0"
```

Parton shower cut-off pT for QCD emissions.

```
parameter name="TimeShower:pTminChgQ" default="0.5" min="0.1" max="2.0"
```

Parton shower cut-off pT for photon coupling to coloured particle.

```
parameter name="TimeShower:pTminChg1" default="0.0005" min="0.0001" max="2.0"
```

Parton shower cut-off pT for pure QED branchings. Assumed smaller than (or equal to) $pT_{minChgQ}$.
Hard-process generation

Currently limited selection implemented internally, but can use Fortran PYTHIA 6 library transparently via LHA interface. Provide settings as before, with command of form

\texttt{Pythia6:variable = value}, e.g. \texttt{Pythia6:msel = 6}.

\texttt{variable} can be anything recognized by PYGIVE, but only ones relevant for hard process are actually used.

Can also use Les Houches Accord for any other process, input via runtime Fortran interface or via files.

Overview processes that can be generated:

<table>
<thead>
<tr>
<th>Process</th>
<th>internal</th>
<th>PYTHIA 6</th>
<th>Les Houches</th>
</tr>
</thead>
<tbody>
<tr>
<td>minbias/elastic/diffractive</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>QCD jets (incl. $c\bar{c}, \ b\bar{b}$)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>prompt photons</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>other PYTHIA 6 processes</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>anything else (within limits)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Trying It Out

- Download `pythia8053.tgz` from

 `http://www.thep.lu.se/~torbjorn/Pythia.html`, link “Future”
- Unzip and expand with `tar xvfz pythia8053.tgz`
- Move to the thus created `pythia8053` directory
- Follow the `README` instructions (edit links to PYTHIA 6, HepMC)
- `make` will compile in ~4 minutes (half for PYTHIA 6)
- The `pythia8051.pdf` file contains an introduction to the program
- Open `doc/Welcome.html` in a web browser for the full manual
 (in the future: GUI with xml + Javascript?)
- The `examples` subdirectory contains 14 sample main programs
 (`make mainNN` and then `mainNN.exe > outfile`)
Example of a main program

// Test program main06: study pTZ spectrum at the Tevatron.
#include "Pythia.h"
using namespace Pythia8;
int main() {
 Pythia pythia;
 pythia.readString("Pythia6:msel = 11");
 pythia.readString("Pythia6:ckin(1) = 80."");
 pythia.readString("PartonLevel:MI = off");
 pythia.readString("Beams:primordialKTwidth = 2.");
 pythia.init(2212, -2212, 1960.);
 Hist pTZ("dN/dpTZ",100,0.,100.);
 // Begin event loop. Generate event. Skip if error. List first few.
 for (int iEvent = 0; iEvent < 10000; ++iEvent) {
 if (!pythia.next()) continue;
 if (iEvent < 2) pythia.event.list();
 // Loop over particles in event. Find last Z0 copy. Fill its pT.
 int iZ = 0;
 for (int i = 0; i < pythia.event.size(); ++i)
 if (pythia.event[i].id() == 23) iZ = i;
 pTZ.fill(pythia.event[iZ].pT());
 }
 pythia.statistics();
 cout << pTZ;
 return 0;
}
Missing topics

- Many, many processes
- More on phase space selection (resonances, \(2 \rightarrow 3, \ldots\))
- Resonance widths and decays
- More external-input facilities, with improved ME/PS matching
- MI/ISR/FSR interleaving (with colour flow models)
- Hadronization: popcorn baryons, updated decay tables, Bose–Einstein
- Event analysis routines, other facilities
- …

Notable simplifications

- Only transverse-momentum-ordered showers
- Only most recent multiple interactions scenario(s)
- Only string fragmentation

+ Complete second pass to sort out minor issues
Outlook

- **C++ PYTHIA 8 is coming along**
 - Roughly according to three-year plan the first year! *
 - On hold during autumn 2005, now progressing again *
 - \(\sim 1 \) sub-subversion per working week, currently 8.054 *
 - Put recent versions on web at irregular intervals *
 - First (almost) production-quality release, 8.100, early 2007 (?) *
 - Debugged and tuned by LHC startup 2008 (?) *
 - Overtaking Fortran version usage by 2009 (???) *

- **Feedback is most welcome**
 - Basic structure is settling down . . . *
 - . . . but still lot of room for changes *
 - e.g. interfacing to other programs *