

Introduction to Event Generators 1

Torbjörn Sjöstrand

Theoretical Particle Physics
Department of Astronomy and Theoretical Physics
Lund University
Sölvegatan 14A, SE-223 62 Lund, Sweden

CTEQ/MCnet School, DESY, 10 July 2016

Course Plan and Position

Event generators: model and understand (LHC) events

Complementary to the "textbook" picture of particle physics, since event generators are close to how things work "in real life".

Course Plan and Position

Event generators: model and understand (LHC) events

Complementary to the "textbook" picture of particle physics, since event generators are close to how things work "in real life".

- Lecture 1 Introduction, generators, Monte Carlo methods
- Lecture 2 Parton showers: final and initial
- Lecture 3 Multiparton interactions, other soft physics
- Lecture 4 Hadronization, generator news, conclusions
- + 2 lectures on "Matching and merging" by Simon Plätzer
- + 3 hands-on tutorials with event generators

Course Plan and Position

Event generators: model and understand (LHC) events

Complementary to the "textbook" picture of particle physics, since event generators are close to how things work "in real life".

```
Lecture 1 Introduction, generators, Monte Carlo methods
```

- Lecture 2 Parton showers: final and initial
- Lecture 3 Multiparton interactions, other soft physics
- Lecture 4 Hadronization, generator news, conclusions
- + 2 lectures on "Matching and merging" by Simon Plätzer
- + 3 hands-on tutorials with event generators

Learn more:

A. Buckley et al., "General-purpose event generators for LHC physics", Phys. Rep. 504 (2011) 145 [arXiv:1101.2599[hep-ph]]

Warning: schematic only, everything simplified, nothing to scale, ...

Incoming beams: parton densities

Hard subprocess: described by matrix elements

Resonance decays: correlated with hard subprocess

Initial-state radiation: spacelike parton showers

Final-state radiation: timelike parton showers

Multiple parton-parton interactions . . .

... with its initial- and final-state radiation

Beam remnants and other outgoing partons

Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

The strings fragment to produce primary hadrons

These are the particles that hit the detector

A tour to Monte Carlo

... because Einstein was wrong: God does throw dice!

Quantum mechanics: amplitudes \Longrightarrow probabilities

Anything that possibly can happen, will! (but more or less often)

Event generators: trace evolution of event structure. Random numbers \approx quantum mechanical choices.

The Monte Carlo method

Want to generate events in as much detail as Mother Nature

⇒ get average and fluctutations right

 \Longrightarrow make random choices, \sim as in nature

The Monte Carlo method

```
Want to generate events in as much detail as Mother Nature
                    ⇒ get average and fluctutations right
                   \implies make random choices, \sim as in nature
            \sigma_{\text{final state}} = \sigma_{\text{hard process}} \mathcal{P}_{\text{tot,hard process} \to \text{final state}}
(appropriately summed & integrated over non-distinguished final states)
where \mathcal{P}_{tot} = \mathcal{P}_{res} \, \mathcal{P}_{ISR} \, \mathcal{P}_{FSR} \, \mathcal{P}_{MPI} \mathcal{P}_{remnants} \, \mathcal{P}_{hadronization} \, \mathcal{P}_{decays}
             with \mathcal{P}_i = \prod_i \mathcal{P}_{ij} = \prod_i \prod_k \mathcal{P}_{ijk} = \dots in its turn
                                ⇒ divide and conquer
```

```
Want to generate events in as much detail as Mother Nature
                  ⇒ get average and fluctutations right
                \implies make random choices, \sim as in nature
          \sigma_{\text{final state}} = \sigma_{\text{hard process}} \mathcal{P}_{\text{tot,hard process} \to \text{final state}}
(appropriately summed & integrated over non-distinguished final states)
where \mathcal{P}_{tot} = \mathcal{P}_{res} \, \mathcal{P}_{ISR} \, \mathcal{P}_{FSR} \, \mathcal{P}_{MPI} \mathcal{P}_{remnants} \, \mathcal{P}_{hadronization} \, \mathcal{P}_{decays}
            with \mathcal{P}_i = \prod_i \mathcal{P}_{ij} = \prod_i \prod_k \mathcal{P}_{ijk} = \dots in its turn
                            ⇒ divide and conquer
     an event with n particles involves \mathcal{O}(10n) random choices,
(flavour, mass, momentum, spin, production vertex, lifetime, . . . )
LHC: \sim 100 charged and \sim 200 neutral (+ intermediate stages)
                         ⇒ several thousand choices
                           (of \mathcal{O}(100) different kinds)
```

Why generators?

- Allow theoretical and experimental studies of complex multiparticle physics
- Large flexibility in physical quantities that can be addressed
- Vehicle of ideology to disseminate ideas from theorists to experimentalists

Can be used to

- predict event rates and topologies
 - ⇒ can estimate feasibility
- simulate possible backgrounds
 - ⇒ can devise analysis strategies
- study detector requirements
 - ⇒ can optimize detector/trigger design
- study detector imperfections
 - ⇒ can evaluate acceptance corrections

The workhorses: what are the differences?

Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC physics studies, covering all aspects above, but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978): originated in hadronization studies, still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984): originated in coherent showers (angular ordering), cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000): had own matrix-element calculator/generator originated with matching & merging issues.

MCnet

Herwig PYTHIA Sherpa MadGraph

Plugin: Ariadne DIPSY HEJ

CEDAR: Rivet Professor HepForge LHAPDF HepMC

- EU-funded 2007–10, 2013–16, 2017–20
- Generator development
- Services to community
- PhD student training
- Common activities
- Summer schools2016: DESY (w. CTEQ)2017: Lund, 3 7 July
- Short-term studentships (3 - 6 months).
 Formulate your project!
 Experimentalists welcome!

Nodes: Manchester CERN Durham Glasgow Göttingen Heidelberg Karlsruhe **UC** London Louvain Lund

Monash (Au) SLAC (US)

Other Relevant Software

Some examples (with apologies for many omissions):

- Other event/shower generators: PhoJet, Ariadne, Dipsy, Cascade, Vincia
- Matrix-element generators: MadGraph_aMC@NLO, Sherpa, Helac, Whizard, CompHep, CalcHep, GoSam
- Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++, VBFNLO, BlackHat, Rocket
- Special BSM scenarios: Prospino, Charybdis, TrueNoir
- Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay
- Feynman rule generators: FeynRules
- PDF libraries: LHAPDF
- Resummed (p₊) spectra: ResBos
- Approximate loops: LoopSim
- Jet finders: anti-k_⊥ and FastJet
- Analysis packages: Rivet, Professor, MCPLOTS
- Detector simulation: GEANT, Delphes
- Constraints (from cosmology etc): DarkSUSY, MicrOmegas
- Standards: PDG identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Can be meaningfully combined and used for LHC physics!

Putting it together

Torbjörn Sjöstrand Event Generators 1 slide 21/45

PDG particle codes

A. Fundamental objects

```
Z'^0
       11
                             32
                                         39
                                              G
                                  Z''^0
                             33
                                         41
                                              R^0
       12
                  22
   u
          \nu_{\rm e}
3
                 Z^0
                                  W'^+
  s | 13
                             34
                                        42
                                              LQ
4
                 24 	ext{ W}^+
                             35 	 H^0 	 51
  c | 14
                                              DM_0
  b 15
                 25 h^0
                             A^0
6
       16
                             37
                                  H^{+}
           \nu_{	au}
```

add — sign for antiparticle, where appropriate

+ diquarks, SUSY, technicolor, . . .

B. Mesons

$$100\,|q_1|+10\,|q_2|+(2s+1)$$
 with $|q_1|\geq |q_2|$ particle if heaviest quark u, $\overline{\rm s},$ c, $\overline{\rm b};$ else antiparticle

C. Baryons

$$1000\ q_1+100\ q_2+10\ q_3+(2s+1)$$
 with $q_1\geq q_2\geq q_3$, or Λ -like $q_1\geq q_3\geq q_2$

Les Houches LHA/LHEF event record

At initialization:

- beam kinds and E's
- PDF sets selected
- weighting strategy
- number of processes

Per process in initialization:

- ullet integrated σ
- ullet error on σ
- maximum $d\sigma/d(PS)$
- process label

Per event:

- number of particles
- process type
- event weight
- process scale
- \bullet $\alpha_{\rm em}$
- \bullet $\alpha_{\rm s}$
- (PDF information)

Per particle in event:

- PDG particle code
- status (decayed?)
- 2 mother indices
- colour & anticolour indices
- $(p_x, p_y, p_z, E), m$
- lifetime au
- spin/polarization

Detour: Monte Carlo techniques

"Spatial" problems: no memory/ordering

- Integrate a function
- Pick a point at random according to a probability distribution

"Temporal" problems: has memory

• Radioactive decay: probability for a radioactive nucleus to decay at time t, given that it was created at time 0

In reality combined into multidimensional problems:

- Random walk (variable step length and direction)
- Charged particle propagation through matter (stepwise loss of energy by a set of processes)
- Parton showers (cascade of successive branchings)
- Multiparticle interactions (ordered multiple subcollisions)

Integration and selection

Assume function f(x), studied range $x_{\min} < x < x_{\max}$, where $f(x) \ge 0$ everywhere

Two connected standard tasks:

1 Calculate (approximatively)

$$\int_{x_{\min}}^{x_{\max}} f(x') \, \mathrm{d}x'$$

2 Select x at random according to f(x)

In step 2 f(x) is viewed as "probability distribution" with implicit normalization to unit area, and then step 1 provides overall correct normalization.

Integral as an area/volume

Theorem

An n-dimensional integration \equiv an n+1-dimensional volume

$$\int f(x_1,\ldots,x_n)\,\mathrm{d}x_1\ldots\mathrm{d}x_n\equiv\int\int_0^{f(x_1,\ldots,x_n)}1\,\mathrm{d}x_1\ldots\mathrm{d}x_n\,\mathrm{d}x_{n+1}$$

since $\int_0^{f(x)} 1 \, \mathrm{d}y = f(x)$.

Theorem

An n-dimensional integration \equiv an n+1-dimensional volume

$$\int f(x_1,\ldots,x_n)\,\mathrm{d}x_1\ldots\mathrm{d}x_n \equiv \int \int_0^{f(x_1,\ldots,x_n)} 1\,\mathrm{d}x_1\ldots\mathrm{d}x_n\,\mathrm{d}x_{n+1}$$

since $\int_0^{f(x)} 1 \, \mathrm{d}y = f(x)$.

So, for 1+1 dimension, selection of x according to f(x) is equivalent to uniform selection of (x,y) in the area

 $x_{\min} < x < x_{\max}, \ 0 < y < f(x).$

Therefore

$$\int_{x_{\min}}^{x} f(x') dx' = R \int_{x_{\min}}^{x_{\max}} f(x') dx'$$

(area to left of selected x is uniformly distributed fraction of whole area)

Analytical solution

If know primitive function F(x) and know inverse $F^{-1}(y)$ then

$$F(x) - F(x_{\min}) = R(F(x_{\max}) - F(x_{\min})) = R A_{\text{tot}}$$

$$\implies x = F^{-1}(F(x_{\min}) + R A_{\text{tot}})$$

Proof: introduce $z = F(x_{\min}) + R A_{\text{tot}}$. Then

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}R} \frac{\mathrm{d}R}{\mathrm{d}x} = 1 \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}R}} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{1}{\frac{\mathrm{d}F^{-1}(z)}{\mathrm{d}z} \frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{\frac{\mathrm{d}F(x)}{\mathrm{d}x}}{\frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{f(x)}{A_{\mathrm{tot}}}$$

Torbjörn Sjöstrand Event Generators 1 slide 27/45 If $f(x) \le f_{\max}$ in $x_{\min} < x < x_{\max}$ use interpretation as an area

- select $x = x_{\min} + R(x_{\max} x_{\min})$
- 2 select $y = R f_{\text{max}}$ (new R!)
- 3 while y > f(x) cycle to 1

Integral as by-product:

$$I = \int_{x_{\min}}^{x_{\max}} f(x) \, \mathrm{d}x = f_{\max} \left(x_{\max} - x_{\min} \right) \frac{N_{\mathrm{acc}}}{N_{\mathrm{try}}} = A_{\mathrm{tot}} \, \frac{N_{\mathrm{acc}}}{N_{\mathrm{try}}}$$

Binomial distribution with $p=N_{
m acc}/N_{
m try}$ and $q=N_{
m fail}/N_{
m try}$, so error

$$\frac{\delta \textit{I}}{\textit{I}} = \frac{\textit{A}_{\rm tot} \, \sqrt{\textit{p} \, \textit{q} / \textit{N}_{\rm try}}}{\textit{A}_{\rm tot} \, \textit{p}} = \sqrt{\frac{\textit{q}}{\textit{p} \, \textit{N}_{\rm try}}} = \sqrt{\frac{\textit{q}}{\textit{N}_{\rm acc}}} < \frac{1}{\sqrt{\textit{N}_{\rm acc}}}$$

Importance sampling

distribution

Improved version of hit-and-miss: f(x) < f(x) in

If
$$f(x) \le g(x)$$
 in $x_{\min} < x < x_{\max}$ and $G(x) = \int g(x') dx'$ is simple

- and $G^{-1}(y)$ is simple

 1 select x according to g(x)
 - 2 select y = R g(x) (new R!)
 - 3 while y > f(x) cycle to 1

If
$$f(x) \le g(x) = \sum_i g_i(x)$$
, where all g_i "nice" $(G_i(x))$ invertible) but $g(x)$ not

1 select *i* with relative probability

$$A_i = \int_{x_{\min}}^{x_{\max}} g_i(x') \, \mathrm{d}x'$$

- 2 select x according to $g_i(x)$
- 3 select $y = R g(x) = R \sum_{i} g_{i}(x)$
- 4 while y > f(x) cycle to 1

Works since

$$\int f(x) dx = \int \frac{f(x)}{g(x)} \sum_{i} g_i(x) dx = \sum_{i} A_i \int \frac{g_i(x) dx}{A_i} \frac{f(x)}{g(x)}$$

Consider "radioactive decay":

N(t)= number of remaining nuclei at time t but normalized to $N(0)=N_0=1$ instead, so equivalently N(t)= probability that (single) nucleus has not decayed by time t $P(t)=-\mathrm{d}N(t)/\mathrm{d}t=$ probability for it to decay at time t

Naively $P(t) = c \Longrightarrow N(t) = 1 - ct$. Wrong! Conservation of probability driven by depletion: a given nucleus can only decay once

Correctly $P(t) = cN(t) \Longrightarrow N(t) = \exp(-ct)$ i.e. exponential dampening $P(t) = c \exp(-ct)$

There is memory in time!

Temporal methods: radioactive decays – 2

For radioactive decays P(t) = cN(t), with c constant, but now generalize to time-dependence:

$$P(t) = -\frac{\mathrm{d}N(t)}{\mathrm{d}t} = f(t)N(t); \quad f(t) \geq 0$$

Standard solution:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -f(t)N(t) \iff \frac{\mathrm{d}N}{N} = \mathrm{d}(\ln N) = -f(t)\,\mathrm{d}t$$

$$\ln N(t) - \ln N(0) = -\int_0^t f(t') \, \mathrm{d}t' \implies N(t) = \exp\left(-\int_0^t f(t') \, \mathrm{d}t'\right)$$

$$F(t) = \int_{-\tau}^{\tau} f(t') dt' \implies N(t) = \exp\left(-(F(t) - F(0))\right)$$

Assuming $F(\infty) = \infty$, i.e. always decay, sooner or later:

$$N(t) = R \implies t = F^{-1}(F(0) - \ln R)$$

Torbjörn Sjöstrand Event Generators 1 slide 32/45

The veto algorithm: problem

What now if f(t) has no simple F(t) or F^{-1} ? Hit-and-miss not good enough, since for $f(t) \leq g(t)$, g "nice",

$$t = G^{-1}(G(0) - \ln R) \implies N(t) = \exp\left(-\int_0^t g(t') dt'\right)$$
$$P(t) = -\frac{dN(t)}{dt} = g(t) \exp\left(-\int_0^t g(t') dt'\right)$$

and hit-or-miss provides rejection factor f(t)/g(t), so that

$$P(t) = f(t) \exp\left(-\int_0^t g(t') dt'\right)$$

(modulo overall normalization), where it ought to have been

$$P(t) = f(t) \exp\left(-\int_0^t f(t') dt'\right)$$

Torbjörn Sjöstrand Event Generators 1 slide 33/45

The veto algorithm: solution

The veto algorithm

- 1 start with i = 0 and $t_0 = 0$
- i = i + 1
- 3 $t_i = G^{-1}(G(t_{i-1}) \ln R)$, i.e $t_i > t_{i-1}$
- $4 \quad y = R g(t)$
- 5 while y > f(t) cycle to 2

That is, when you fail, you keep on going from the time when you failed, and *do not* restart at time t = 0. (Memory!)

Torbjörn Sjöstrand Event Generators 1 slide 34/45

The veto algorithm: proof -1

Study probability to have *i* intermediate failures before success:

Define
$$S_g(t_a, t_b) = \exp\left(-\int_{t_a}^{t_b} g(t') dt'\right)$$
 ("Sudakov factor")
$$P_0(t) = P(t = t_1) = g(t) S_g(0, t) \frac{f(t)}{g(t)} = f(t) S_g(0, t)$$

$$P_1(t) = P(t = t_2)$$

$$= \int_0^t dt_1 g(t_1) S_g(0, t_1) \left(1 - \frac{f(t_1)}{g(t_1)}\right) g(t) S_g(t_1, t) \frac{f(t)}{g(t)}$$

$$= f(t) S_g(0, t) \int_0^t dt_1 (g(t_1) - f(t_1)) = P_0(t) I_{g-f}$$

$$P_2(t) = \dots = P_0(t) \int_0^t dt_1 (g(t_1) - f(t_1)) \int_{t_1}^t dt_2 (g(t_2) - f(t_2))$$

$$= P_0(t) \int_0^t dt_1 (g(t_1) - f(t_1)) \int_0^t dt_2 (g(t_2) - f(t_2)) \theta(t_2 - t_1)$$

$$= P_0(t) \frac{1}{2} \left(\int_0^t dt_1 (g(t_1) - f(t_1))\right)^2 = P_0(t) \frac{1}{2} I_{g-f}^2$$

Torbjörn Sjöstrand Event Generators 1 slide 35/45

The veto algorithm: proof - 2

Generally, *i* intermediate times corresponds to *i*! equivalent ordering regions.

$$P_i(t) = P_0(t) \frac{1}{i!} I_{g-f}^i$$

$$P(t) = \sum_{i=0}^{\infty} P_i(t) = P_0(t) \sum_{i=0}^{\infty} \frac{I_{g-f}^i}{i!} = P_0(t) \exp(I_{g-f})$$

$$= f(t) \exp\left(-\int_0^t g(t') dt'\right) \exp\left(\int_0^t (g(t') - f(t')) dt'\right)$$

$$= f(t) \exp\left(-\int_0^t f(t') dt'\right)$$

The winner takes it all

Assume "radioactive decay" with two possible decay channels 1&2

$$P(t) = -\frac{\mathrm{d}N(t)}{\mathrm{d}t} = f_1(t)N(t) + f_2(t)N(t)$$

Alternative 1:

use normal veto algorithm with $f(t) = f_1(t) + f_2(t)$. Once t selected, pick decays 1 or 2 in proportions $f_1(t) : f_2(t)$.

Alternative 2:

The winner takes it all

select t_1 according to $P_1(t_1) = f_1(t_1)N_1(t_1)$ and t_2 according to $P_2(t_2) = f_2(t_2)N_2(t_2)$, i.e. as if the other channel did not exist. If $t_1 < t_2$ then pick decay 1, while if $t_2 < t_1$ pick decay 2.

Equivalent by simple proof.

Multijets – the need for Higher Orders

 $2 \rightarrow 6$ process or $2 \rightarrow 2$ dressed up by bremsstrahlung!?

Perturbative QCD

Perturbative calculations ⇒ **Matrix Elements**.

Improved calculational techniques allows

* more **legs** (= final-state partons)

* more **loops** (= virtual partons not visible in final state)
but with limitations, especially for loops.

Parton Showers:

approximations to matrix element behaviour, most relevant for multiple emissions at low energies and/or angles. To be described next.

Matching and Merging:

methods to combine matrix elements (at high scales) with parton showers (at low scales), with a consistent and smooth transition.

To be covered in lectures by Simon Plätzer.

In the beginning: Electrodynamics

An electrical charge, say an electron, is surrounded by a field:

In the beginning: Electrodynamics

An electrical charge, say an electron, is surrounded by a field:

For a rapidly moving charge this field can be expressed in terms of an equivalent flux of photons:

$$\mathrm{dn}_{\gamma} pprox rac{2\alpha_{\mathrm{em}}}{\pi} rac{\mathrm{d}\theta}{\theta} rac{\mathrm{d}\omega}{\omega}$$

Equivalent Photon Approximation, or method of virtual quanta (e.g. Jackson) (Bohr; Fermi; Weiszäcker, Williams \sim 1934)

In the beginning: Electrodynamics

An electrical charge, say an electron, is surrounded by a field:

For a rapidly moving charge this field can be expressed in terms of an equivalent flux of photons:

$$dn_{\gamma} \approx \frac{2\alpha_{\rm em}}{\pi} \frac{d\theta}{\theta} \frac{d\omega}{\omega}$$

Equivalent Photon Approximation, or method of virtual quanta (e.g. Jackson) (Bohr; Fermi; Weiszäcker, Williams ~1934)

 θ : collinear divergence, saved by $m_{\rm e}>0$ in full expression. ω : true divergence, $n_{\gamma}\propto\int{\rm d}\omega/\omega=\infty$, but $E_{\gamma}\propto\int\omega\,{\rm d}\omega/\omega$ finite.

These are virtual photons: continuously emitted and reabsorbed.

In the beginning: Bremsstrahlung

- Initial State Radiation (ISR): part of it continues \sim in original direction of e
- Final State Radiation (FSR):
 the field needs to be regenerated around outgoing e,
 and transients are emitted ~ around outgoing e direction

In the beginning: Bremsstrahlung

- Initial State Radiation (ISR): part of it continues \sim in original direction of e
- Final State Radiation (FSR):
 the field needs to be regenerated around outgoing e,
 and transients are emitted ~ around outgoing e direction

Emission rate provided by equivalent photon flux in both cases. Approximate cutoffs related to timescale of process: the more violent the hard collision, the more radiation!

In the beginning: Exponentiation

Assume $\sum E_{\gamma} \ll E_{\rm e}$ such that energy-momentum conservation is not an issue. Then

$$d\mathcal{P}_{\gamma} = dn_{\gamma} \approx \frac{2\alpha_{\rm em}}{\pi} \frac{d\theta}{\theta} \frac{d\omega}{\omega}$$

is the probability to find a photon at ω and θ , irrespectively of which other photons are present.

In the beginning: Exponentiation

Assume $\sum E_{\gamma} \ll E_{\rm e}$ such that energy-momentum conservation is not an issue. Then

$$d\mathcal{P}_{\gamma} = dn_{\gamma} \approx \frac{2\alpha_{\rm em}}{\pi} \frac{d\theta}{\theta} \frac{d\omega}{\omega}$$

is the probability to find a photon at ω and θ , irrespectively of which other photons are present.

Uncorrelated ⇒ Poissonian number distribution:

$$\mathcal{P}_{i} = \frac{\langle n_{\gamma} \rangle^{i}}{i!} e^{-\langle n_{\gamma} \rangle}$$

with

$$\langle n_{\gamma}
angle = \int_{ heta_{
m min}}^{ heta_{
m max}} \int_{\omega_{
m min}}^{\omega_{
m max}} \, {
m dn}_{\gamma} pprox rac{2lpha_{
m em}}{\pi} \, \ln \left(rac{ heta_{
m max}}{ heta_{
m min}}
ight) \, \ln \left(rac{\omega_{
m max}}{\omega_{
m min}}
ight)$$

Torbjörn Sjöstrand Event Generators 1 slide 42/45

In the beginning: Exponentiation

Assume $\sum E_{\gamma} \ll E_{\rm e}$ such that energy-momentum conservation is not an issue. Then

$$d\mathcal{P}_{\gamma} = dn_{\gamma} \approx \frac{2\alpha_{\rm em}}{\pi} \frac{d\theta}{\theta} \frac{d\omega}{\omega}$$

is the probability to find a photon at ω and θ , irrespectively of which other photons are present.

Uncorrelated ⇒ Poissonian number distribution:

$$\mathcal{P}_{i} = \frac{\langle n_{\gamma} \rangle^{i}}{i!} e^{-\langle n_{\gamma} \rangle}$$

with

$$\langle n_{\gamma}
angle = \int_{ heta_{
m min}}^{ heta_{
m max}} \int_{\omega_{
m min}}^{\omega_{
m max}} \, {
m dn}_{\gamma} pprox rac{2lpha_{
m em}}{\pi} \, \ln \left(rac{ heta_{
m max}}{ heta_{
m min}}
ight) \, \ln \left(rac{\omega_{
m max}}{\omega_{
m min}}
ight)$$

Note that $\int d\mathcal{P}_{\gamma} = \int dn_{\gamma} > 1$ is not a problem: proper interpretation is that *many* photons are emitted.

Exponentiation: reinterpretation of $d\mathcal{P}_{\gamma}$ into Poissonian.

QED: Fixed Order Perturbation Theory

Order-by-order perturbative ME calculation contains fully differential distributions of multi- γ emissions,

but integrating the main contributions (leading logs) gives

$$\begin{array}{llll} \frac{\sigma_{0\gamma}}{\sigma_{0}} & \approx & 1 & -\alpha_{\mathrm{em}} \mathcal{N} & +\alpha_{\mathrm{em}}^{2} \frac{\mathcal{N}^{2}}{2} & -\alpha_{\mathrm{em}}^{3} \frac{\mathcal{N}^{3}}{6} \\ & & & & +\alpha_{\mathrm{em}} \mathcal{N} & -\alpha_{\mathrm{em}}^{2} \mathcal{N}^{2} & +\alpha_{\mathrm{em}}^{3} \frac{\mathcal{N}^{3}}{2} \\ & & & & & +\alpha_{\mathrm{em}}^{2} \mathcal{N}^{2} & -\alpha_{\mathrm{em}}^{3} \frac{\mathcal{N}^{3}}{2} \\ & & & & & +\alpha_{\mathrm{em}}^{2} \frac{\mathcal{N}^{2}}{2} & -\alpha_{\mathrm{em}}^{3} \frac{\mathcal{N}^{3}}{2} \\ & & & & & +\alpha_{\mathrm{em}}^{3} \frac{\mathcal{N}^{3}}{6} \end{array}$$

which is the expanded form of the Poissonian $\mathcal{P}_i = \langle n_\gamma \rangle^i \, e^{-\langle n_\gamma \rangle} \, /i!$ with $\langle n_\gamma \rangle = \alpha_{\rm em} N$.

Torbjörn Sjöstrand Event Generators 1 slide 43/45

QED: Fixed Order Perturbation Theory

Order-by-order perturbative ME calculation contains fully differential distributions of multi- γ emissions,

but integrating the main contributions (leading logs) gives

$$\begin{array}{llll} \frac{\sigma_{0\gamma}}{\sigma_{0}} & \approx & 1 & -\alpha_{\mathrm{em}} \mathcal{N} & +\alpha_{\mathrm{em}}^{2} \frac{\mathcal{N}^{2}}{2} & -\alpha_{\mathrm{em}}^{3} \frac{\mathcal{N}^{3}}{6} \\ & & & & \\ \frac{\sigma_{1\gamma}}{\sigma_{0}} & \approx & & +\alpha_{\mathrm{em}} \mathcal{N} & -\alpha_{\mathrm{em}}^{2} \mathcal{N}^{2} & +\alpha_{\mathrm{em}}^{3} \frac{\mathcal{N}^{3}}{2} \\ & & & & \\ \frac{\sigma_{2\gamma}}{\sigma_{0}} & \approx & & & +\alpha_{\mathrm{em}}^{2} \frac{\mathcal{N}^{2}}{2} & -\alpha_{\mathrm{em}}^{3} \frac{\mathcal{N}^{3}}{2} \\ & & & & & \\ \frac{\sigma_{3\gamma}}{\sigma_{0}} & \approx & & & +\alpha_{\mathrm{em}}^{3} \frac{\mathcal{N}^{3}}{6} \end{array}$$

which is the expanded form of the Poissonian $\mathcal{P}_i = \langle n_\gamma \rangle^i \, e^{-\langle n_\gamma \rangle} \, /i!$ with $\langle n_\gamma \rangle = \alpha_{\rm em} N$.

For practical applications two different regions

- large $\theta, \omega \Rightarrow$ rapidly convergent perturbation theory
- small $\theta, \omega \Rightarrow$ exponentiation needed, even if approximate

So how is QCD the same?

• A quark is surrounded by a gluon field

$$\mathrm{d}\mathcal{P}_\mathrm{g} = \mathrm{dn}_\mathrm{g} \approx \frac{8\alpha_\mathrm{s}}{3\pi} \, \frac{\mathrm{d}\theta}{\theta} \, \frac{\mathrm{d}\omega}{\omega}$$

i.e. only differ by substitution $\alpha_{\rm em} \to 4\alpha_{\rm s}/3$.

 An accelerated quark emits gluons with collinear and soft divergences, and as Initial and Final State Radiation.

q

• Typically $\langle n_{\rm g} \rangle = \int dn_{\rm g} \gg 1$ since $\alpha_{\rm s} \gg \alpha_{\rm em}$ \Rightarrow even more pressing need for exponentiation.

So how is QCD different?

- QCD is non-Abelian, so a gluon is charged and is surrounded by its own field: emission rate $4\alpha_{\rm s}/3 \to 3\alpha_{\rm s}$, field structure more complicated, interference effects more important.
- $\alpha_s(Q^2)$ diverges for $Q^2 \to \Lambda_{\rm QCD}^2$, with $\Lambda_{\rm QCD} \sim 0.2\,{\rm GeV} = 1\,{\rm fm}^{-1}$.
- Confinement: gluons below $\Lambda_{\rm QCD}$ not resolved \Rightarrow de facto cutoffs.

Unclear separation between "accelerated charge" and "emitted radiation": many possible Feynman graphs \approx histories.