

Fragmentation Function Fallacies

Torbjörn Sjöstrand

Department of Physics, Lund University

ECFA workshop on e^+e^- factories, virtual overflow sessions, 16 – 17 October 2024

Introduction

Prompted by previous discussions on fragmentation functions, which assume clean separation of perturbative and nonperturbative physics:

$$D_{\mathrm{H/Q}}(x_{\mathrm{H}} = x_{\mathrm{Q}}z, \mu^2) = D_{\mathrm{Q/Q}}(x_{\mathrm{Q}}, \mu^2, \mu_0^2) \otimes f_{Q}(z) \times P_{\mathrm{H/Q}}^{\mathrm{flavour}}$$

where $D_{Q/Q}$ evolves with μ^2 according to DGLAP, usually from $D_{Q/Q}(x_Q, \mu^2 = \mu_0^2 \approx m_Q^2) = \delta(x_Q - 1)$; and the μ^2 -independent $f_Q(z)$ has 0 < z < 1.

Old knowledge seems lost to people of today, so time to remind that

- fragmentation functions fail in hadronic collisions;
- \bullet they are based on the concept of independent fragmentation, which has been disproven in e^+e^- collisions; and
- string and cluster fragmentation of a Q introduce a dependence on the colour connections and momenta of nearby partons.

Factorization breakdown in fixed-target $\pi^- p$

Fragmentation function factorization

$$rac{\mathrm{d}N_{\mathrm{D}}}{\mathrm{d}x_{\mathrm{F}}} = rac{\mathrm{d}N_{\mathrm{c}}}{\mathrm{d}x_{\mathrm{F}}} \otimes f(z) \ , \ 0 < z < 1 \ , \ z pprox rac{x_{\mathrm{F,D}}}{x_{\mathrm{F,c}}} pprox rac{E_{\mathrm{D}}}{E_{\mathrm{c}}} pprox rac{p_{\mathrm{D}}^{+}}{p_{\mathrm{c}}^{+}}$$

does not work!

Torbjörn Sjöstrand

Production asymmetries in fixed-target π^-p

Charm hadron composition at the LHC

QCD-based Colour Reconnection

Christiansen & Skands(2015): QCD-inspired CR (QCDCR, CR-BLC)

Triple-junction also in HERWIG cluster model (2017).

Bottom production asymmetries

Asymmetries predicted and observed also for charm and bottom hadrons at the LHC, but full picture not yet clear.

$$\mathbf{A} = (\sigma(\mathbf{\Lambda}_{\mathrm{b}}^{\mathbf{0}}) - \sigma(\overline{\mathbf{\Lambda}}_{\mathrm{b}}^{\mathbf{0}})) / (\sigma(\mathbf{\Lambda}_{\mathrm{b}}^{\mathbf{0}}) + \sigma(\overline{\mathbf{\Lambda}}_{\mathrm{b}}^{\mathbf{0}}))$$

LHCb, 2107.09593

Enhanced $\Lambda_{\rm b}$ production at low p_{\perp} , like for $\Lambda_{\rm c}$, dilutes asymmetry?

Little/no support for fragmentation function approach in hadron colliders.

Fragmentation models

Consider hadronization in $e^+e^- \rightarrow \gamma^*/Z^0 \rightarrow Q\overline{Q}$:

- (a) Independent Fragmentation: each parton fragments separately along an axis stretching out from the CM origin;
 ideological underpinning of fragmentation functions.
- (b) String Fragmentation: string stretched from the Q via intermediate colour-ordered gluons to the \overline{Q} , with hadrons formed along its length (and an occasional $g \rightarrow q\overline{q}$ leads to the break of a string in two).
- (c) Cluster Fragmentation: force all final gluons to split by $g \rightarrow q\overline{q}$ to give smaller and simpler clusters that decay to two hadrons (and massive clusters are split into smaller along "string" direction).

The string/JADE Effect

Torbjörn Sjöstrand

Jets are crooked

 (E, \mathbf{p}) not preserved when massless partons become massive jets!

In the string model the reconstructed q and \overline{q} jet axes are shifted in the g direction:

Clear PETRA/LEP evidence that independent fragmentation does not work (in e^+e^-).

b and B fragmentation spectra

Study $e^+e^- \rightarrow Z^0 \rightarrow b\overline{b}$ at $E_{cm} = m_Z$ with shower and hadronization; exclude events with additional $g \rightarrow b\overline{b}$ branchings

 $x_E = 2E/m_Z$ and $x_p = 2|\mathbf{p}|/m_Z$ similar, except at small x values. Red: b quarks after shower. Blue: B hadrons after hadronization. Here $\langle z \rangle (x_b)$ with $z = x_B/x_b$. Large x_b : "deceleration" in $b \to B$. Small x_b : "acceleration" in $b \to B$.

1.0

Environmental dependence

Environmental dependence — caveat

Results not translated to hadron level:

Still study parton-level bin 0.78 < $x_{E,b}$ < 0.80. (Unphysical!) Reversed order "clean" \leftrightarrow "dirty", since now energy lost in $b \rightarrow B$ contributes to background.

Issues and conclusion

- Naively dσ(D) = dσ(c) ⊗ f(z = E_B/E_b) × P_{flavour}(c → D).
 Such factorization is strongly broken in hadron collisions, as manifested by beam drag "speedup", D (and B) asymmetries, and an environment-dependent charm hadron composition.
- PETRA and LEP data disprove Independent Fragmentation.
- Fragmentation functions are static. They may work for some simple tasks, but do not offer a full picture.
- Event generators with strings/clusters are not perfect, but they offer a more realistic and dynamic approach.
- Generator uncertainty from many issues: NⁿLO, PDFs, m_{c,b}, α_s, shower, match&merge, colour reconnection, ...