

PYTHIA 8 Overview

Torbjörn Sjöstrand

torbjorn.sjostrand@fysik.lu.se Department of Physics Lund University

Workshop on the tuning of hadronic interaction models University Wuppertal, 22–25 January 2024

The structure of an LHC pp collision

O Hard Interaction

Resonance Decays

MECs, Matching & Merging

FSR

ISR*

- QED
- Weak Showers
- Hard Onium

○ Multiparton Interactions

Beam Remnants*

Strings

☑ Ministrings / Clusters

Colour Reconnections

- String Interactions
- Bose-Einstein & Fermi-Dirac
- Primary Hadrons
- Secondary Hadrons

Hadronic Reinteractions

(*: incoming lines are crossed)

Code size

- \bullet JETSET (1978): string fragmentation, decays, e^+e^- physics.
- PYTHIA (1982): add-on for $\mathrm{pp}/\overline{\mathrm{p}}\mathrm{p}.$
- PYTHIA6 (1994): integrate programs into one.
- PYTHIA8 (2004): begin transformation from Fortran to C++.

Code usage and limitations

- Most used model for hadronization part in $e^+e^-/pp/\overline{p}p$, since used "under the hood" in **many** other programs.
- Contains > 200 hard processes within and beyond the SM, but nowadays more common to use such input e.g. from MadGraph_aMC@NLO or PowHeg.
- Not perfect. Most worrisome conflicts with data:
 - strangeness enhancement at high multiplicity,
 - baryon enhancement in charm and bottom production,
 - forward particle spectra, and
 - the ridge effect at high multiplicities.

Different studies have aimed to improve situation.

• Historical limitations for cosmic-ray applications:

- only for high-energy interactions,
- initialization for fixed energy and beam particles, and
- only $e^{\pm}, \mu^{\pm}, p, \overline{p}, n, \overline{n}$ beams (not pA or AA!).

Recent extensions open for integration with CORSIKA 8.

Strangeness enhancement (2016)

(Also observed in ${\rm B_s/B^0}$ by LHCb.)

Signs of QGP in high-multiplicity pp collisions? If not, what else?

The Core–Corona Solution (2007)

Currently most realistic "complete" approach: mix discrete strings with continuous quark–gluon plasma.

core => hydro => statistical decay ($\mu = 0$) corona => string decay

Allows smooth transition. Implemented in **EPOS** MC K. Werner, PRL 98 (2007) 152301

Qualitatively agrees with ALICE, but too steep rise.

The Rope Solution (2015)

Dense environment \Rightarrow several intertwined strings \Rightarrow **rope**.

Sextet example: $3 \otimes 3 = 6 \oplus \overline{3}$ $C_2^{(6)} = \frac{5}{2}C_2^{(3)}$ At first string break $\kappa_{\text{eff}} \propto C_2^{(6)} - C_2^{(3)} \Rightarrow \kappa_{\text{eff}} = \frac{3}{2}\kappa$. At second string break $\kappa_{\text{eff}} \propto C_2^{(3)} \Rightarrow \kappa_{\text{eff}} = \kappa$. Multiple \sim parallel strings \Rightarrow random walk in colour space. Larger $\kappa_{\text{eff}} \Rightarrow$ less tunneling suppression $\exp\left(-\frac{\pi m_q^2}{\kappa_{\text{eff}}}\right)$

- more strangeness
- more baryons

• mainly agrees with ALICE, but p/π overestimated Bierlich, Gustafson, Lönnblad, Tarasov, JHEP 1503, 148; from Biro, Nielsen, Knoll (1984), Białas, Czyz (1985), ...

The charm baryon enhancement (2017)

In 2017/21 ALICE found/confirmed strong enhancement of charm baryon production, relative to LEP, HERA and default PYTHIA.

Colour reconnection (CR, 1985)

MPIs + parton showers \Rightarrow many partons in an event \Rightarrow colour fields ("strings") run criss-cross. CR: fields rearrange, to (mainly) reduce string length:

Two main confirmations:

- $\langle p_{\perp} \rangle (n_{ch})$ is steadily rising in $pp/\overline{p}p$ data (UA1, Tevatron, LHC), but would be (almost) flat if no CR.
- Combined LEP data on $e^+e^- \rightarrow W^+W^- \rightarrow q_1\overline{q}_2q_3\overline{q}_4$ is best described with 49% CR, 2.2 σ away from no-CR. (hep-ex/0612034)

Extended Colour Reconnection Models (2015)

Christiansen, Skands: QCD-inspired CR (QCDCR):

Charm baryon differential distributions (2021)

"Vacuum behaviour" recovered at larger p_{\perp} . QCDCR does well for some distributions, but less so for others, so improvements needed.

The beauty baryon enhancement (2019)

Beam drag effects

Colour flow connects hard scattering to beam remnants. Can have consequences, e.g. in π^-p :

If low-mass string e.g.: $\overline{c}d: D^-, D^{*-}$ $cud: \Lambda_c^+, \Sigma_c^+, \Sigma_c^{*+}$ \Rightarrow flavour asymmetries \overline{c} \overline{d}

Can give D "drag" to larger $x_{\rm F}$ than c quark.

Bottom asymmetries

$$A(y), A(p_{\perp}) = \frac{\sigma(\Lambda_{\rm b}^{\rm 0}) - \sigma(\Lambda_{\rm b}^{\rm o})}{\sigma(\Lambda_{\rm b}^{\rm 0}) + \sigma(\overline{\Lambda}_{\rm b}^{\rm 0})}$$

CR1 = QCDCR, with no enhancement at low p_{\perp} . Enhanced $\Lambda_{\rm b}$ production at low p_{\perp} , like for $\Lambda_{\rm c}$, dilutes asymmetry? Asymmetries observed also for other charm and bottom hadrons.

Warning: fragmentation function formalisms unreliable at low p_{\perp} . May lead to incorrect conclusions about intrinsic charm.

Forward physics

Forward region important for cosmic-ray physics \Rightarrow LHCf.

Also for FASER/...and the Forward Physics Facility.

Wide spread of predictions; no generator perfect.

PYTHIA: π^0 too hard, n too soft.

May require improved modelling of

- beam remnant,
- \bullet diffraction, and
- $c/b/\tau$ production.

Beam remnants

Assume one parton kicked out of proton, in pp:

- ♦ Kick out gluon: colour octet q1q2q3 remnant left
 ⇒ split momentum between two strings, one to q1q2 antitriplet and one to q3 triplet.
- Wick out valence quark: colour triplet diquark left,
 ⇒ single string stretched out from beam remnant.
- Solution Straight Straigh
- Solution String to q₂q₃ antitriplet.
 Solution String to q₂q₃ antitriplet.

13 TeV pp nondiffractive: \sim 85% gluons, \sim 5% each for others. MPIs can give more complicated topologies, e.g. with junctions.

New forward tune

Some possible actions for harder baryons and softer mesons:

- Use QCDCR for better central baryon production.
- Make diquark remnant take more than twice quark ditto: (already default) helps some.
- In string diquark picture B and B are nearest neighbours, but with popcorn allow intermediate meson: ... BMB.... Thus leading diquark either BMM... or MBM.... New: forbid latter possibility (or only suppress it).
- Normal fragmentation function

$$f(z) \propto rac{1}{z} \, \left(1-z
ight)^{a} \, \exp\left(-rac{bm_{ot}^{2}}{z}
ight) \, , \quad z = rac{(E+
ho_{z})_{
m hadron}}{(E+
ho_{z})_{
m left \ in \ string}}$$

modified with separately tuned (a and) b for leading diquark.

- Reduce primordial k_{\perp} in remnant for soft collisions.
- Max Fieg, F. Kling, H. Schulz, TS, arXiv:2309.08604

New forward results

The Ridge Effect (2010)

(c) CMS N \geq 110, p_>0.1GeV/c

Elliptic flow in AA predicted from geometry + pressure.

Not so for pp, and yet ridge is observed at high multiplicities:

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

Shove / repulsion

Can give ridge and flow, in azimuth and p_{\perp} .

Hadronic rescattering can also contribute.

A new framework for hadronic collisions

Based on 2 articles by **Marius Utheim** & TS: "A Framework for Hadronic Rescattering in pp Collisions", Eur. Phys. J. C80 (2020) 907, arXiv:2005.05658 "Hadron Interactions for Arbitrary Energies and Species, with Applications to Cosmic Rays", Eur. Phys. J. C82 (2022) 21, arXiv:2108.03481

- Models arbitrary hadron-hadron collisions at low energies.
- Models arbitrary hadron-p/n collisions at any energy.
- $\bullet\,$ Initialization slow, ~ 15 minutes,
 - \star but thereafter works for any hadron–p/n at any energy, and \star initialization data can be saved, so only need to do once.
- The ANGANTYR nuclear geometry part used to extend to hadron-nucleus at any energy.
- Native C++ simplifies interfacing Pythia $8 \leftrightarrow \text{Corsika } 8$.
- So far limited comparisons with data.

Comparisons with other models - 1

Maximilian Reininghaus, TS, M. Utheim, arXiv:2303:02792

Additive quark rule $\sigma_{\pi \mathrm{p}} \approx (2/3) \sigma_{\mathrm{pp}}$ at high energies.

$$\sigma_{hA} = \frac{A}{\langle n_{coll} \rangle} \sigma_{hp}$$
 where $\langle n_{coll} \rangle$ comes from Angantyr

Comparisons with other models - 2

Torbjörn Sjöstrand

In examples/main183.cc a hadronic cascade is traced through the atmosphere, but poor substitute for full CORSIKA tracking.

The examples/main184.cc alternative separates tasks. Interactions/decays are performed by the PythiaCascade class. The main program or CORSIKA does the tracking. Either calls PythiaCascade to

- provide the hA collision cross section,
- perform an hA collision, or
- perform an h decay.

Internally to PythiaCascade there are two Pythia instances:

- PythiaMain administrates an hA collision, and does an h decay, and
- PythiaColl does an hp/hn subcollision, and provides the hp/hn cross section.

PythiaCascade methods

The public PythiaCascade methods/references (currently) are

- PythiaCascade constructor,
- init initializes all program elements,
- sigmaSetuphN calculates a hp cross section,
- sigmaColl calculates a hA (= hn) cross section, based on the hp one above,
- nextColl performs an hA collision,
- nextDecay performs an h decay,
- compress reduces the event record to final particles only,
- stat prints error statistics at the end of the run,
- particleData(), rndm() references that can be used in the main program for particle data or random numbers.

Summary and outlook

- LEP era "jet universality" prediction: hadronization at LHC the same, only need to add multiparton interactions, beam remnants, colour reconnection and initial-state radiation.
- LHC data has revolutionized the picture of soft physics: Goodbye jet universality!
- This has led to a renewed phenomenology interest: Welcome new mechanisms!
- Still some way to go before a new unified picture is in place, covering the evolution from e^+e^- to low- n_{ch} pp to AA.
- PYTHIA now has PythiaCascade class for handling cascades in (solid, liquid or gaseous) matter, to be used e.g. from CORSIKA 8 or GEANT 4, but

tuning and other validation remains!

• Newer code directly based on ANGANTYR: see presentation by Marius Utheim on Thursday