

Introduction to Event Generators Part 1: Introduction and Monte Carlo Techniques

Torbjörn Sjöstrand

Department of Physics Lund University

Terascale Monte Carlo School 2024, DESY

Motivation

LHC collision event:

Four leptons clearly visible.

 $\begin{array}{l} \mbox{Maybe} \\ \mbox{H} \rightarrow {\rm Z}^0 {\rm Z}^0 \rightarrow \\ \mbox{e^+e^-} \mu^+ \mu^-. \end{array}$

But what about rest of tracks?

Why and how are they produced?

Course Plan

Event generators: model and understand particle collisions Complementary to the "textbook" picture of particle physics, since event generators are close to how things work "in real life".

- Lecture 1 Introduction to QCD (and the Standard Model) Introduction to generators and Monte Carlo techniques
- Lecture 2 Parton showers and jet physics
- Lecture 3 Multiparton interactions and hadronization

Apologies: PYTHIA-centric, but most of it generic, or else options will be mentioned

Textbook literature examples

- B.R. Martin and G. Shaw, "Particle Physics", Wiley (2017, 4th edition)
- G. Kane, "Modern Elementary Particle Physics", Cambridge University Press (2017, 2nd edition)
- D. Griffiths, "Introduction to Elementary Particles", Wiley (2008, 2nd edition)
- M. Thomson, "Modern Particle Physics", Cambridge University Press (2013)
- A. Rubbia, "Phenomenology of Particle Physics", Cambridge University Press (2022) (1100 pp!)
- P. Skands, "Introduction to QCD", arXiv:1207.2389 [hep-ph] (v5 2017)
- G. Salam, "Toward Jetography", arXiv:0906.1833 [hep-ph]

• A. Buckley et al.,

"General-purpose event generators for LHC physics", Phys. Rep. 504 (2011) 145, arXiv:1101.2599 [hep-ph], 89 pp

- J.M. Campbell et al.,
 "Event Generators for High-Energy Physics Experiments", for Snowmass 2021, arXiv:2203.11110 [hep-ph], 153 pp
- C. Bierlich et al., "A comprehensive guide to the physics and usage of PYTHIA 8.3", accepted by SciPost, arXiv:2203.11601 [hep-ph], 315 pp
- MCnet annual summer schools Monte Carlo network from ~ 10 European universities, see further https://www.montecarlonet.org/, with 2024 school at CERN, 10 - 14 June
- Other schools arranged by CTEQ, DESY, CERN, ...

The Standard Model in a nutshell

The Standard Model = "particles" + "interactions" with well-defined properties and behaviour.

Particles

Particles are spin 1/2 fermions, and

- obey Fermi-Dirac statistics and Pauli exclusion principle,
- can have two spin states, "left" and "right",
- carry unique quantum numbers that are more-or-less well conserved in interactions,
- can be separated into quarks (\Rightarrow hadrons) and leptons,
- come in three generations, distinguished by mass:

$$\begin{array}{c} \text{first} & \text{second} & \text{third} \\ \text{quarks} & \begin{pmatrix} u \\ d \end{pmatrix} & \begin{pmatrix} c \\ s \end{pmatrix} & \begin{pmatrix} t \\ b \end{pmatrix} \\ \text{leptons} & \begin{pmatrix} \nu_e \\ e \end{pmatrix} & \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} & \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix} \end{array}$$

- have each an antiparticle with opposite quantum numbers but same mass, and
- can only be created or destroyed in fermion-antifermion pairs.

Interactions (= forces) come in different kinds. In the Standard Model these are

- electromagnetism, QED, mediated by the photon γ ,
- weak interactions, mediated by the Z^0 , W^+ and W^- ,
- strong interactions, QCD, mediated by eight gluons g, and
- mass generation, mediated by Higgs condensate (+ particle).

Among these, only the W^{\pm} does **not** conserve the number of fermions minus antifermions of each type. E.g. $u + \overline{d} \rightarrow W^+ \rightarrow e^+ \nu_e$ but **not** $u + \overline{c} \rightarrow Z^0 \rightarrow e^+ \mu^-$.

Gravitation, mediated by gravitons, is not included since(a) it is too weak for any influence on particle physics processes,(b) attempts to formulate it as a quantum field theory have failed.

Units and scales

 $1 \,\mathrm{fm} = 10^{-15} \,\mathrm{m} \approx r_{\mathrm{proton}}$ basic distance scale $1 \,\mathrm{GeV} \approx 1.6 \cdot 10^{-10} \,\mathrm{J} \approx m_{\mathrm{proton}} c^2$ basic energy scale $c = 1 \approx 3 \cdot 10^{23} \, \mathrm{fm/s}$, so that t in fm, and p and m in GeV $\hbar = 1 = \hbar c \approx 0.2 \, {
m GeV} \cdot {
m fm}$, e.g. to use in $e^{-ipx/\hbar}
ightarrow e^{-ipx}$ $1 \text{ mb} = 10^{-31} \text{ m}^2 \Rightarrow 1 \text{ fm}^2 = 10 \text{ mb}$ $\hbar^2 = (\hbar c)^2 \approx 0.4 \,\mathrm{GeV}^2 \cdot \mathrm{mb}$ $N = \sigma \int \mathcal{L} dt$ ("experiment = theory × machine") e.g. if $\sigma = 1 \, \text{fb} = 10^{-12} \, \text{mb}$. $\mathcal{L} = 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1} = 10^{38} \,\mathrm{m}^{-2} \mathrm{s}^{-1} = 10^{7} \,\mathrm{mb}^{-1} \mathrm{s}^{-1}$ $T = \int \mathrm{d}t = 24 \,\mathrm{hours} \approx 10^5 \,\mathrm{s},$ then $N \approx 10^{-12} \cdot 10^7 \cdot 10^5 = 1$

Lagrangians

Classical Lagrangian $L = T - V = E_{\text{kinetic}} - E_{\text{potential}}$. Action $S = \int L \, dt$ should be at minimum, $\delta S = 0$:

$$\frac{\partial L}{\partial q} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) \qquad \text{(Euler - Lagrange)}$$

with q a generalized coordinate and \dot{q} a generalized velocity. In quantum field theory instead Lagrangian density \mathcal{L} :

$$L = \int \mathcal{L} d^3 x \quad \Rightarrow \quad S = \int \mathcal{L} d^4 x \quad \Rightarrow \quad \frac{\partial \mathcal{L}}{\partial \varphi} = \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial (\partial_\mu \varphi)} \right)$$

E.g. for a scalar field φ

$$\mathcal{L} = rac{1}{2} \left(\partial_{\mu} \varphi \partial^{\mu} \varphi - m^2 \varphi^2
ight) \quad \Leftrightarrow \quad (\partial^{\mu} \partial_{\mu} + m^2) \varphi = 0$$

i.e. the Klein-Gordon equation.

For
$$\varphi = e^{-ipx}$$
 this gives $(-p^2 + m^2)\varphi = (-E^2 + \mathbf{p}^2 + m^2)\varphi = 0.$

Electromagnetism

The electromagnetic potential $A^{\mu} = (V; \mathbf{A})$ gives

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} = \begin{pmatrix} 0 & -E_{x} & -E_{Y} & -E_{z} \\ E_{x} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{x} \\ E_{z} & -B_{y} & B_{x} & 0 \end{pmatrix}$$

The pure QED Lagrangian is

$$\mathcal{L} = -\frac{1}{4}F^{\mu
u}F_{\mu
u} = \frac{1}{2}(\mathbf{E}^2 - \mathbf{B}^2)$$

Adding (Dirac four-component) fermion fields ψ_f with charges Q_f

$$\mathcal{L} = \sum_{f} \overline{\psi}_{f} \left[\gamma^{\mu} i \partial_{\mu} - m_{f} \right] \psi_{f} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - e \sum_{f} Q_{f} \overline{\psi}_{f} \gamma^{\mu} \psi_{f} A_{\mu}$$

where the last term gives the interactions between the fermions and the electromagnetic field.

Torbjörn Sjöstrand

The Standard Model groups (1)

Examples:

- U(1): group elements $g = e^{i\theta}$ are complex numbers on the unit circle. Abelian.
- SU(n): the set of all complex n × n matrices M that are unitary (M[†]M = 1) and have determinant +1. Non-Abelian.
- SU(2): has three generators T_j the Pauli matrices:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• SU(3) has eight generators T_j – the Gell-Mann matrices:

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{etc}$$

The Standard Model groups (2)

Group elements M can operate on column vectors. In the fundamental representation these are of dimension n. For infinitesimal "rotations", where all θ_i are small,

$$M = \exp\left(i\sum_{j}\theta_{j}T_{j}\right) \approx 1 + i\sum_{j}\theta_{j}T_{j}$$

so the interesting transformations are given by the T_j operations, e.g. in SU(2)

$$\sigma_1 \left(\begin{array}{c} 0\\1\end{array}\right) = \left(\begin{array}{c} 0&1\\1&0\end{array}\right) \left(\begin{array}{c} 0\\1\end{array}\right) = \left(\begin{array}{c} 1\\0\end{array}\right)$$

In the Standard Model the column vectors represent the fermion particles and the T_i generators the interaction mediators.

The Standard Model groups (3)

Standard Model "=" $SU(3)_C \times SU(2)_L \times U(1)_Y$ at high energies, which is reduced to $SU(3)_C \times U(1)_{em}$ at low energies.

Colour group ${\rm SU}(3)_{\textit{C}}\colon$ each quark ${\rm q}$ comes in three "colours", "red", "green" and "blue"

$$\mathbf{q}_{r} = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \quad \mathbf{q}_{g} = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \quad \mathbf{q}_{b} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Eight gluon states can be defined from the Gell-Mann matrices, e.g.

$$g_{r\overline{g}} = \frac{\lambda_1 + i\lambda_2}{2} = \left(\begin{array}{ccc} 0 & 1 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right)$$

And then matrix multiplication gives that

$$g_{r\overline{g}}\mathbf{q}_{g}=\mathbf{q}_{r}$$

The Standard Model Unbroken Lagrangian

At high energies the $SU(3)_C \times SU(2)_L \times U(1)_Y$ is exact. Applying our knowledge, its Lagrangian can be written as

$$\mathcal{L} = \sum_{f} \overline{\psi}_{f} \gamma^{\mu} i \mathcal{D}_{\mu} \psi_{f} - \frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} - \frac{1}{4} W^{i}_{\mu\nu} W^{i\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$
$$\mathcal{D}_{\mu} = \partial_{\mu} + ig_{3} \frac{\lambda^{a}}{2} G^{a}_{\mu} + ig_{2} \frac{\sigma^{i}}{2} W^{i}_{\mu} + ig_{1} \frac{Y}{2} B_{\mu}$$
$$\mathcal{F}^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} - \partial_{\nu} A^{a}_{\mu} + gf^{abc} A^{b}_{\mu} A^{c}_{\nu}$$

where the G^a only act on quarks,

and the W^i only on the lefthanded fermions.

A represents the potential, F the field tensor and g the coupling of the respective interaction.

The F require an additional third term for non-Abelian groups, where f^{abc} are group constants.

The Higgs mechanism breaks the electroweak part, but QCD is unaffected, except that quarks gain mass.

Using the Standard Model Lagrangian

- Fermion wave function: ψ_f(x) = u_f(p) e^{-ipx}. u_f(p) destroys a fermion f or creates an antifermion f
 , ū_f(p) creates a fermion f or destroys an antifermion f
 , where u_f(p) and ū_f(p) are represented by Dirac spinors.
- Vector boson wave function: A^μ(x) = ε^μ(p) e^{-ipx}, where ε^μ is a polarization vector; can create or destroy depending on context.
- Scalar boson wave function: φ(x) = 1 e^{-ipx}; can create or destroy.
- Bilinear field combinations describe propagation of "free" particles, e.g. $\overline{\psi}_f \gamma^{\mu} i \partial_{\mu} \psi_f$.
- Trilinear field combinations describe triple vertices, e.g. $\overline{\psi}_f \gamma^{\mu} e Q_f A_{\mu} \psi_f$.

• Tetralinear field combinations describe quartic vertices. Spin handling major complicating factor!

Particle lines and vertices

Some $\gamma/Z^0/W^{\pm}$ combinations not allowed, e.g. $\gamma\gamma\gamma$ or $\gamma\gamma H$. Quantum number preservation, notably colour and charge. Arbitrary time order, with fermion in \equiv antifermion out.

Feynman diagrams

A Feynman graph is a useful pictorial representation of a process. It can be converted into a matrix element \mathcal{M} , \approx an amplitude, by combining

- incoming and outgoing wave function normalizations,
- internally exchanged particle "propagators", and
- vertex coupling strengths.

The basic QCD processes

Mandelstam variables

$$\hat{s} = (p_1 + p_2)^2 = (p_3 + p_4)^2$$

$$\hat{t} = (p_1 - p_3)^2 = (p_2 - p_4)^2$$

$$\hat{u} = (p_1 - p_4)^2 = (p_2 - p_3)^2$$

$$p_1$$

$$p_2$$

$$p_4$$

$$p_4$$

$$p_4$$

$$p_4$$

$$p_4$$

$$p_4$$

In rest frame, massless limit: $m_1 = m_2 = m_3 = m_4 = 0$

$$egin{aligned} \hat{s} &= E_{ ext{CM}}^2 \ \hat{t} &= -rac{\hat{s}}{2}(1-\cos\hat{ heta}) pprox - p_{ot}^2 \ \hat{u} &= -rac{\hat{s}}{2}(1+\cos\hat{ heta}) \ \hat{s} + \hat{t} + \hat{u} &= 0 \end{aligned}$$

 $\begin{array}{ll} \mbox{Six basic } 2 \rightarrow 2 \mbox{ QCD processes:} \\ \mbox{qq}' \rightarrow \mbox{qq}' & \mbox{q}\overline{q} \rightarrow \mbox{q}'\overline{q}' & \mbox{q}\overline{q} \rightarrow \mbox{gg} \\ \mbox{qg} \rightarrow \mbox{qg} & \mbox{gg} \rightarrow \mbox{q}\overline{q} & \mbox{gg} \rightarrow \mbox{gg} \end{array}$

Cross sections

Consider subprocess $a + b \to 1 + 2 + \ldots + n$. If $m_a^2, m_b^2 \ll \hat{s} = (p_a + p_b)^2$ then

$$d\hat{\sigma} = \frac{|\mathcal{M}|^2}{2\hat{s}} d\Phi_n$$
$$d\Phi_n = (2\pi)^4 \,\delta^{(4)} \left(p_a + p_b - \sum_{i=1}^n p_i \right) \prod_{i=1}^n \frac{\mathrm{d}^3 p_i}{(2\pi)^3 2E_i}$$
$$d\Phi_2 = \frac{\mathrm{d}\hat{t}}{8\pi\hat{s}}$$

so for process $qq' \to qq'$ on preceding page

$$\begin{split} \mathrm{d}\hat{\sigma} &\approx \left(g_3^2 \frac{\hat{s}}{\hat{t}}\right)^2 \frac{1}{2\hat{s}} \frac{\mathrm{d}\hat{t}}{8\pi\hat{s}} = \pi \left(\frac{g_3^2}{4\pi}\right)^2 \frac{\mathrm{d}\hat{t}}{\hat{t}^2} = \pi \alpha_s^2 \frac{\mathrm{d}\hat{t}}{\hat{t}^2} \\ &\propto \frac{\mathrm{d}\cos(\hat{\theta})}{\sin^4(\hat{\theta}/2)} \quad (\text{Rutherford scattering}) \propto \frac{\mathrm{d}p_{\perp}^2}{p_{\perp}^4} \end{split}$$

Closeup: $qg \rightarrow qg$

Consider $q(1)g(2) \rightarrow q(3)g(4)$:

$$\begin{split} t : p_{g^*} &= p_1 - p_3 \Rightarrow m_{g^*}^2 = (p_1 - p_3)^2 = \hat{t} \Rightarrow d\hat{\sigma}/d\hat{t} \sim 1/\hat{t}^2 \\ u : p_{q^*} &= p_1 - p_4 \Rightarrow m_{q^*}^2 = (p_1 - p_4)^2 = \hat{u} \Rightarrow d\hat{\sigma}/d\hat{t} \sim -1/\hat{s}\hat{u} \\ s : p_{q^*} &= p_1 + p_2 \Rightarrow m_{q^*}^2 = (p_1 + p_2)^2 = \hat{s} \Rightarrow d\hat{\sigma}/d\hat{t} \sim 1/\hat{s}^2 \end{split}$$

Contribution of each sub-graph is gauge-dependent, only sum is well-defined:

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{t}} = \frac{\pi\alpha_{\mathrm{s}}^2}{\hat{s}^2} \left[\frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2} + \frac{4}{9} \frac{\hat{s}}{(-\hat{u})} + \frac{4}{9} \frac{(-\hat{u})}{\hat{s}} \right]$$

Composite beams

In reality all beams are composite: $p: q, g, \overline{q}, \dots$ $e^-: e^-, \gamma, e^+, \dots$ $\gamma: e^{\pm}, q, \overline{q}, g$

Factorization

$$\sigma^{AB} = \sum_{i,j} \iint dx_1 dx_2 f_i^{(A)}(x_1, Q^2) f_j^{(B)}(x_2, Q^2) \int d\hat{\sigma}_{ij}$$

x: momentum fraction, e.g. $p_i = x_1 p_A$; $p_j = x_2 p_B$ Q^2 : factorization scale, "typical momentum transfer scale"

Factorization only proven for a few cases, like γ^*/Z^0 prodution, and strictly speaking not correct e.g. for jet production,

but good first approximation and unsurpassed physics insight .

Couplings

Divergences in higher-order calculations \Rightarrow renormalization \Rightarrow couplings run, i.e. depend on energy scale of process. Small effect for α_{em} (and α_1 , α_2 , $\sin^2 \theta_W$), but big for $\alpha_s = \alpha_3$.

Small Q: large α_s , "infrared slavery" = "confinement", perturbation theory fails

Large Q: small α_s , "asymptotic freedom", perturbation theory applicable

Also quark masses run!

Hadrons

Confinement: no free quarks or gluons, but bound in colour singlets — hadrons.

mesons: qq (a) η_c^{**} π С (b) z D^{*} $\rho_{\bullet,\bullet}^{\circ}\omega$ D K D D_s^*

Examples mesons:

$$\begin{aligned} \pi^+ &= u\overline{d} \\ \pi^0 &= (u\overline{u} - d\overline{d})/\sqrt{2} \\ \pi^- &= d\overline{u} \\ K^+ &= u\overline{s} \end{aligned}$$

Exampels baryons: p = uud n = udd $\Lambda^0 = sud$ $\Omega^- = sss$

+ spin, orbital and radial excitations.

Renormalization group equations \Rightarrow

$$\alpha_{\rm S}(Q^2) = \frac{12\pi}{(33-2n_f)\ln(Q^2/\Lambda_{\rm QCD}^2)} + \cdots$$

where n_f is the number of quarks with $m_q < Q$, usually 5. α_S continuous at flavour thresholds $\Rightarrow \Lambda_{QCD} \rightarrow \Lambda_{QCD}^{(n_f)}$.

Confinement scale $\Lambda_{QCD} \approx 0.2 \,\text{GeV}$; $\alpha_{S}(\Lambda_{QCD}) = \infty$ $1/\Lambda_{QCD} \approx 0.2 \,\text{GeV} \cdot \text{fm}/0.2 \,\text{GeV} = 1 \,\text{fm}$ hard QCD: $Q \gg \Lambda_{QCD}$ such that $\alpha_{S}(Q) \ll 1$; say $Q \ge 10 \,\text{GeV}$ soft QCD: $Q \le \Lambda_{QCD}$; in reality $Q \le 2 \,\text{GeV}$

Higher orders and parton showers

In QED, accelerated charges give rise to radiation; this is the principle of a radio transmitter! Also for deceleration: **bremsstrahlung**. Dipole in QCD: The more violent the acceleration/deceleration, the higher frequencies/energies can be emitted. Track emission process as repeated branchings, where each can take a non-negligible energy fraction. QED: $f \to f\gamma, \gamma \to f\bar{f}$ (f any charged fermion) QCD: $q \rightarrow qg, g \rightarrow q\overline{q}, g \rightarrow gg$ (q any quark)

Matrix element: exact as method, but limited by complexity. Parton showers: approximation to construct "complete" events. Match & merge: combine the best of the two.

Multiparton interactions (MPIs)

In pp collisions *t*-channel exchange of gluons dominate:

Naively $p_{\perp min} \sim 1/r_{\rm p} \sim \Lambda_{\rm QCD}$, but more relevant is typical separation between colour and anticolour, which if $r_{\rm sep} \sim r_{\rm p}/10$ implies $p_{\perp min} \sim 2 \, {\rm GeV}$, a better data fit.

Hadronization

QCD does not allow free colour charges!

In the decay of a colour singlet, say $(e^+e^-) \to Z^0 \to q \overline{q}$, the q and \overline{q} move apart but remain connected by a "string".

Can be viewed as an elongated hadron with radius $r_{\rm string} \approx r_{\rm p}$ (× $\sqrt{2/3}$ since 3 \rightarrow 2 dimensions).

Pulling out string costs energy: string tension $\kappa \approx 1 \text{ GeV/fm}$.

String fragmentation: a new $q'\overline{q}'$ pair is created inside the field between the original $q\overline{q}$ one, with colours screening these endpoints. Thus the big string breaks into two smaller ones. This can be repeated to give a sequence of "small" strings \approx hadrons.

In sum: each quark remains confined during string fragmentation, but the partner will change.

A jet: a spray of hadrons moving out in \sim the same direction.

No unique definition, but "in the eye of the beholder".

At the LHC most commonly found in the $(\eta, \varphi, E_{\perp})$ space with the anti- k_{\perp} algorithm.

Naively a jet is associated with an outgoing quark or gluon of the hard process, but modified by ISR, FSR, MPI, hadronization.

Warning: schematic only, everything simplified, nothing to scale, ...

Incoming beams: parton densities

Hard subprocess: described by matrix elements

Resonance decays: correlated with hard subprocess

Initial-state radiation: spacelike parton showers

Torbjörn Sjöstrand

Introduction to Event Generators 1

Final-state radiation: timelike parton showers

Multiple parton-parton interactions

... with its initial- and final-state radiation

Beam remnants and other outgoing partons

Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

Torbjörn Sjöstrand

A collected event view

- **O**Hard Interaction
- Resonance Decays
- MECs, Matching & Merging
- FSR

ISR*

- QED
- Weak Showers
- Hard Onium

) Multiparton Interactions

- Beam Remnants*
- 🔯 Strings
- Ministrings / Clusters
- Colour Reconnections
- String Interactions
- Bose-Einstein & Fermi-Dirac
- Primary Hadrons
- Secondary Hadrons
- Hadronic Reinteractions
- (*: incoming lines are crossed)

A tour to Monte Carlo

... because Einstein was wrong: God does throw dice! Quantum mechanics: amplitudes \implies probabilities Anything that possibly can happen, will! (but more or less often)

Event generators: trace evolution of event structure. Random numbers \approx quantum mechanical choices.

The Monte Carlo method

Want to generate events in as much detail as Mother Nature \implies get average *and* fluctutations right \implies make random choices, \sim as in nature

 $\sigma_{\text{final state}} = \sigma_{\text{hard process}} \mathcal{P}_{\text{tot,hard process} \to \text{final state}}$

(appropriately summed & integrated over non-distinguished final states)

where $\mathcal{P}_{tot} = \mathcal{P}_{res} \, \mathcal{P}_{ISR} \, \mathcal{P}_{FSR} \, \mathcal{P}_{MPI} \mathcal{P}_{remnants} \, \mathcal{P}_{hadronization} \, \mathcal{P}_{decays}$

with $\mathcal{P}_i = \prod_j \mathcal{P}_{ij} = \prod_j \prod_k \mathcal{P}_{ijk} = \dots$ in its turn

\implies divide and conquer

an event with *n* particles involves $\mathcal{O}(10n)$ random choices, (flavour, mass, momentum, spin, production vertex, lifetime, ...) LHC: ~ 100 charged and ~ 200 neutral (+ intermediate stages) \implies several thousand choices (of $\mathcal{O}(100)$ different kinds)

Why generators?

- Allow theoretical and experimental studies of *complex* multiparticle physics
- Large flexibility in physical quantities that can be addressed
- Vehicle of ideology to disseminate ideas from theorists to experimentalists

Can be used to

- predict event rates and topologies
 - \Rightarrow can estimate feasibility
- simulate possible backgrounds
 - \Rightarrow can devise analysis strategies
- study detector requirements
 - \Rightarrow can optimize detector/trigger design
- study detector imperfections
 - \Rightarrow can evaluate acceptance corrections

The workhorses: what are the differences?

Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC $\rm pp$ physics studies, covering all aspects above, but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978): originated in hadronization studies, still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984): originated in coherent showers (angular ordering), cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000): had own matrix-element calculator/generator originated with matching & merging issues.

Delphi and Pythia

Delphi: 120 km west of Athens, on the slopes of Mount Parnassus. Python: giant snake killed by Apollon. The Oracle of Delphi: ca. 1000 B.C. – 390 A.D. **Pythia**: local prophetess/priestess. Key role in myths and history, notably in "The Histories" by Herodotus of Halicarnassus (~482 – 420 B.C.) Some examples (with apologies for many omissions), usually combined for maximum effect:

- Event generators: EPOS, HIjing, Sibyll, DPMjet, Genie
- Matrix-element generators: MadGraph_aMC@NLO, Sherpa, Helac, Whizard, CompHep, CalcHep, GoSam
- Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++, VBFNLO, BlackHat, Rocket
- Special BSM scenarios: Prospino, Charybdis, TrueNoir
- Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay
- Feynman rule generators: FeynRules
- PDF libraries: LHAPDF
- Resummed (p_{\perp}) spectra: ResBos
- Approximate loops: LoopSim
- Parton showers: Ariadne, Vincia, Dire, Deductor, PanScales
- Jet finders: anti- k_{\perp} and FastJet
- Analysis packages: Rivet, Professor, MCPLOTS
- Detector simulation: GEANT, Delphes
- Constraints (from cosmology etc): DarkSUSY, MicrOmegas
- Standards: PDG identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Putting it together

PDG particle codes

A. Fundamental objects

1	d	11	e^{-}	21	g	32	${\rm Z'}^0$	39	G
2	u	12	$ u_{ m e}$	22	γ	33	Z''^0	41	R^0
3	s	13	μ^-	23	\mathbf{Z}^{0}	34	W'^+	42	LQ
4	с	14	$ u_{\mu}$	24	W^+	35	H^{0}	51	DM_0
5	b	15	$ au^{-}$	25	h^0	36	A ⁰		
6	t	16	$ u_{ au}$			37	H^+		

add — sign for antiparticle, where appropriate

+ diquarks, SUSY, technicolor, ...

B. Mesons

 $100 |q_1| + 10 |q_2| + (2s + 1)$ with $|q_1| \ge |q_2|$ particle if heaviest quark u, \overline{s} , c, \overline{b} ; else antiparticle

C. Baryons

 $\begin{array}{c|c} 1000 \ q_1 + 100 \ q_2 + 10 \ q_3 + (2s+1) \\ \text{with} \ q_1 \ge q_2 \ge q_3, \text{ or } \Lambda \text{-like} \ q_1 \ge q_3 \ge q_2 \\ \hline \\ 2112 \ n & 3122 \ \Lambda^0 & 2224 \ \Delta^{++} & 3214 \ \Sigma^{*0} \\ 2212 \ p & 3212 \ \Sigma^0 & 1114 \ \Delta^- & 3334 \ \Omega^- \end{array}$

Les Houches LHA/LHEF event record

At initialization:

- beam kinds and E's
- PDF sets selected
- weighting strategy
- number of processes

Per process in initialization:

- integrated σ
- $\bullet~{\rm error}~{\rm on}~\sigma$
- maximum $d\sigma/d(PS)$
- process label

Per event:

- number of particles
- process type
- event weight
- process scale
- $\alpha_{\rm em}$
- α_s
- (PDF information)

Per particle in event:

- PDG particle code
- status (decayed?)
- 2 mother indices
- colour & anticolour indices
- $(p_x, p_y, p_z, E), m$
- lifetime τ
- spin/polarization

"Spatial" problems: no memory/ordering

- Integrate a function
- **②** Pick a point at random according to a probability distribution

"Temporal" problems: has memory

Radioactive decay: probability for a radioactive nucleus to decay at time t, given that it was created at time 0

In reality combined into multidimensional problems:

- Random walk (variable step length and direction)
- Charged particle propagation through matter (stepwise loss of energy by a set of processes)
- **③ Parton showers** (cascade of successive branchings)
- Multiparticle interactions (ordered multiple subcollisions)

Assume algorithm that returns "random numbers" R, uniformly distributed in range 0 < R < 1 and uncorrelated.

Integration and selection

Assume function f(x), studied range $x_{\min} < x < x_{\max}$, where $f(x) \ge 0$ everywhere

Two connected standard tasks:

1 Calculate (approximatively)

 $\int_{x_{\min}}^{x_{\max}} f(x') \, \mathrm{d}x'$

2 Select x at random according to f(x)In step 2 f(x) is viewed as "probability distribution" with implicit normalization to unit area, and then step 1 provides overall correct normalization.

Integral as an area/volume

Theorem

An n-dimensional integration \equiv an n + 1-dimensional volume

$$\int f(x_1, \dots, x_n) \, \mathrm{d}x_1 \dots \mathrm{d}x_n \equiv \int \int_0^{f(x_1, \dots, x_n)} 1 \, \mathrm{d}x_1 \dots \mathrm{d}x_n \, \mathrm{d}x_{n+1}$$
since $\int_0^{f(x)} 1 \, \mathrm{d}y = f(x)$.

Theorem

An n-dimensional integration \equiv an n + 1-dimensional volume

$$\int f(x_1,\ldots,x_n)\,\mathrm{d} x_1\ldots\,\mathrm{d} x_n\equiv\int\int_0^{f(x_1,\ldots,x_n)}1\,\mathrm{d} x_1\ldots\,\mathrm{d} x_n\,\mathrm{d} x_{n+1}$$

since $\int_0^{f(x)} 1 \, dy = f(x)$. So, for 1 + 1 dimension, selection of x according to f(x) is equivalent to uniform selection of (x, y) in the area $x_{\min} < x < x_{\max}, \ 0 < y < f(x)$. Therefore

$$\int_{x_{\min}}^{x} f(x') \, \mathrm{d}x' = R \int_{x_{\min}}^{x_{\max}} f(x') \, \mathrm{d}x'$$

(area to left of selected x is uniformly distributed fraction of whole area)

Analytical solution

If know primitive function F(x) and know inverse $F^{-1}(y)$ then

$$F(x) - F(x_{\min}) = R(F(x_{\max}) - F(x_{\min})) = RA_{tot}$$
$$\implies x = F^{-1}(F(x_{\min}) + RA_{tot})$$

Proof: introduce $z = F(x_{\min}) + R A_{tot}$. Then

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x} = \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}R} \frac{\mathrm{d}R}{\mathrm{d}x} = 1 \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}R}} = \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{1}{\frac{\mathrm{d}F^{-1}(z)}{\mathrm{d}z}\frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{\frac{\mathrm{d}F(x)}{\mathrm{d}x}}{\frac{\mathrm{d}z}{\mathrm{d}R}} = \frac{f(x)}{A_{\mathrm{tot}}}$$

- / >

Hit-and-miss solution

If $f(x) \leq f_{\max}$ in $x_{\min} < x < x_{\max}$ fmax use interpretation as an area rejected y_2 select $x = x_{\min} + R(x_{\max} - x_{\min})$ y_1 pted select $y = R f_{max}$ (new R!) 0 3 while y > f(x) cycle to 1 x_{min} \boldsymbol{x} x_{\max} Integral as by-product:

$$I = \int_{x_{\min}}^{x_{\max}} f(x) \, \mathrm{d}x = f_{\max} \left(x_{\max} - x_{\min} \right) \frac{N_{\mathrm{acc}}}{N_{\mathrm{try}}} = A_{\mathrm{tot}} \frac{N_{\mathrm{acc}}}{N_{\mathrm{try}}}$$

Binomial distribution with $p = N_{\rm acc}/N_{\rm try}$ and $q = N_{\rm fail}/N_{\rm try}$, so error

$$\frac{\delta I}{I} = \frac{A_{\rm tot} \sqrt{p q/N_{\rm try}}}{A_{\rm tot} p} = \sqrt{\frac{q}{p N_{\rm try}}} = \sqrt{\frac{q}{N_{\rm acc}}} < \frac{1}{\sqrt{N_{\rm acc}}}$$

Importance sampling

Improved version of hit-and-miss: If $f(x) \le g(x)$ in $x_{\min} < x < x_{\max}$ and $G(x) = \int g(x') dx'$ is simple and $G^{-1}(y)$ is simple

 $\frac{1}{\text{distribution}} \text{ select } x \text{ according to } g(x)$

$$\frac{2}{2} \text{ select } y = R g(x) \text{ (new } R!)$$

3 while
$$y > f(x)$$
 cycle to 1

Multichannel

If $f(x) \le g(x) = \sum_i g_i(x)$, where all g_i "nice" ($G_i(x)$ invertible) but g(x) not

select *i* with relative probability

$$A_i = \int_{x_{\min}}^{x_{\max}} g_i(x') \, \mathrm{d} x'$$

2 select x according to $g_i(x)$

select
$$y = R g(x) = R \sum_{i} g_i(x)$$

while y > f(x) cycle to 1

Works since

$$\int f(x) \, \mathrm{d}x = \int \frac{f(x)}{g(x)} \sum_{i} g_i(x) \, \mathrm{d}x = \sum_{i} A_i \int \frac{g_i(x) \, \mathrm{d}x}{A_i} \frac{f(x)}{g(x)}$$

Temporal methods: radioactive decays - 1

Consider "radioactive decay": N(t) = number of remaining nuclei at time tbut normalized to $N(0) = N_0 = 1$ instead, so equivalently N(t) = probability that (single) nucleus has not decayed by time tP(t) = -dN(t)/dt = probability for it to decay at time t

Naively $P(t) = c \Longrightarrow N(t) = 1 - ct$. Wrong! Conservation of probability driven by depletion:

a given nucleus can only decay once

Correctly

 $P(t) = cN(t) \Longrightarrow N(t) = \exp(-ct)$ i.e. exponential dampening $P(t) = c \exp(-ct)$

There is memory in time!

Temporal methods: radioactive decays – 2

For radioactive decays P(t) = cN(t), with c constant, but now generalize to time-dependence:

$$P(t) = -\frac{\mathrm{d}N(t)}{\mathrm{d}t} = f(t)N(t); \quad f(t) \ge 0$$

Standard solution:

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = -f(t)N(t) \iff \frac{\mathrm{d}N}{N} = \mathrm{d}(\ln N) = -f(t)\,\mathrm{d}t$$

$$\ln N(t) - \ln N(0) = -\int_0^t f(t')\,\mathrm{d}t' \implies N(t) = \exp\left(-\int_0^t f(t')\,\mathrm{d}t'\right)$$

$$F(t) = \int^t f(t')\,\mathrm{d}t' \implies N(t) = \exp\left(-(F(t) - F(0))\right)$$
Assuming $F(\infty) = \infty$, i.e. always decay, sooner or later:

$$N(t) = R \implies t = F^{-1}(F(0) - \ln R)$$

The veto algorithm: problem

What now if f(t) has no simple F(t) or F^{-1} ? Hit-and-miss not good enough, since for $f(t) \le g(t)$, g "nice",

$$t = G^{-1}(G(0) - \ln R) \implies N(t) = \exp\left(-\int_0^t g(t') dt'\right)$$
$$P(t) = -\frac{dN(t)}{dt} = g(t) \exp\left(-\int_0^t g(t') dt'\right)$$

and hit-or-miss provides rejection factor f(t)/g(t), so that

$$P(t) = f(t) \exp\left(-\int_0^t g(t') \, \mathrm{d}t'\right)$$

(modulo overall normalization), where it ought to have been

$$P(t) = f(t) \exp\left(-\int_0^t f(t') \, \mathrm{d}t'\right)$$

The veto algorithm

1 start with
$$i = 0$$
 and $t_0 = 0$
2 $i = i + 1$
3 $t = t_i = G^{-1}(G(t_{i-1}) - \ln R)$, i.e $t_i > t_{i-1}$
4 $y = Rg(t)$
5 while $y > f(t)$ cycle to 2

$$\begin{array}{cccc} t_0 & t_1 & t_2t_3 & t = t_4 \\ & & & \\ 0 & & & \\ \end{array}$$

That is, when you fail, you keep on going from the time when you failed, and *do not* restart at time t = 0. (Memory!)

The veto algorithm: proof -1

Study probability to have *i* intermediate failures before success: Define $S_g(t_a, t_b) = \exp\left(-\int_{t_a}^{t_b} g(t') dt'\right)$ ("Sudakov factor") $P_0(t) = P(t = t_1) = g(t) S_g(0, t) \frac{f(t)}{\sigma(t)} = f(t) S_g(0, t)$ $P_1(t) = P(t = t_2)$ $= \int_{0}^{t} \mathrm{d}t_{1} g(t_{1}) S_{g}(0, t_{1}) \left(1 - \frac{f(t_{1})}{\sigma(t_{1})}\right) g(t) S_{g}(t_{1}, t) \frac{f(t)}{\sigma(t)}$ $= f(t) S_g(0, t) \int_0^t dt_1 (g(t_1) - f(t_1)) = P_0(t) I_{g-f}$ $P_2(t) = \cdots = P_0(t) \int_0^t dt_1 \left(g(t_1) - f(t_1) \right) \int_{t_1}^t dt_2 \left(g(t_2) - f(t_2) \right)$ $= P_0(t) \int_0^t \mathrm{d}t_1 \left(g(t_1) - f(t_1) \right) \int_0^t \mathrm{d}t_2 \left(g(t_2) - f(t_2) \right) \theta(t_2 - t_1)$ $= P_0(t) \frac{1}{2} \left(\int_0^t \mathrm{d}t_1 \left(g(t_1) - f(t_1) \right) \right)^2 = P_0(t) \frac{1}{2} I_{g-f}^2$

The veto algorithm: proof -2

Generally, *i* intermediate times corresponds to *i*! equivalent ordering regions.

$$P_i(t) = P_0(t) \frac{1}{i!} I_{g-f}^i$$

$$P(t) = \sum_{i=0}^{\infty} P_i(t) = P_0(t) \sum_{i=0}^{\infty} \frac{I_{g-f}^i}{i!} = P_0(t) \exp(I_{g-f})$$

= $f(t) \exp\left(-\int_0^t g(t') dt'\right) \exp\left(\int_0^t (g(t') - f(t')) dt'\right)$
= $f(t) \exp\left(-\int_0^t f(t') dt'\right)$

The winner takes it all

Assume "radioactive decay" with two possible decay channels 1&2

$$P(t) = -\frac{\mathrm{d}N(t)}{\mathrm{d}t} = f_1(t)N(t) + f_2(t)N(t)$$

Alternative 1:

use normal veto algorithm with $f(t) = f_1(t) + f_2(t)$. Once t selected, pick decays 1 or 2 in proportions $f_1(t) : f_2(t)$.

Alternative 2:

The winner takes it all

select t_1 according to $P_1(t_1) = f_1(t_1)N_1(t_1)$ and t_2 according to $P_2(t_2) = f_2(t_2)N_2(t_2)$, i.e. as if the other channel did not exist. If $t_1 < t_2$ then pick decay 1, while if $t_2 < t_1$ pick decay 2.

Equivalent by simple proof.

Radioactive decay as perturbation theory

Assume we don't know about exponential function. Recall wrong solution, starting from $N(t) = N_0(t) = 1$:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -cN = -cN_0(t) = -c \Rightarrow N(t) = N_1(t) = 1 - ct$$

Now plug in $N_1(t)$, hoping to find better approximation:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -cN_1(t) \Rightarrow N(t) = N_2(t) = 1 - c \int_0^t (1 - ct') \mathrm{d}t' = 1 - ct + \frac{(ct)^2}{2}$$

and generalize to

$$N_{i+1}(t) = 1 - c \int_0^t N_i(t') dt' \Rightarrow N_{i+1}(t) = \sum_{k=0}^{i+1} \frac{(-ct)^k}{k!}$$

which recovers exponential e^{-ct} for $i \to \infty$. Reminiscent of (QED, QCD) perturbation theory with $c \to \alpha f$. Main event components:

- parton distributions
- hard subprocesses
- initial-state radiation
- final-state interactions
- multiparton interactions
- beam remnants
- hadronization
- decays
- total cross sections

Main Monte Carlo methods:

- integration as an area
- analytical solution
- hit-and-miss
- importance sampling
- multichannel
- the veto algorithm
- the winner takes it all