Introduction to Event Generators

Part 1: Introduction and Monte Carlo Techniques

Torbjörn Sjöstrand

Department of Physics
Lund University
Terascale Monte Carlo School 2024, DESY

Motivation

LHC collision event:
Four leptons clearly visible.

Maybe
$\mathrm{H} \rightarrow \mathrm{Z}^{0} \mathrm{Z}^{0} \rightarrow$
$\mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-}$.
But what about rest of tracks?

Why and how are they produced?

Course Plan

Event generators: model and
understand particle collisions
Complementary to the "textbook" picture of particle physics, since event generators are close to how things work "in real life".

> Lecture 1 Introduction to QCD (and the Standard Model) Introduction to generators and Monte Carlo techniques
> Lecture 2 Parton showers and jet physics
> Lecture 3 Multiparton interactions and hadronization

Apologies: PYTHIA-centric, but most of it generic, or else options will be mentioned

Textbook literature examples

- B.R. Martin and G. Shaw, "Particle Physics", Wiley (2017, 4th edition)
- G. Kane, "Modern Elementary Particle Physics", Cambridge University Press (2017, 2nd edition)
- D. Griffiths, "Introduction to Elementary Particles", Wiley (2008, 2nd edition)
- M. Thomson, "Modern Particle Physics", Cambridge University Press (2013)
- A. Rubbia, "Phenomenology of Particle Physics", Cambridge University Press (2022) (1100 pp!)
- P. Skands, "Introduction to QCD", arXiv:1207.2389 [hep-ph] (v5 2017)
- G. Salam, "Toward Jetography", arXiv:0906.1833 [hep-ph]

Event generator literature

- A. Buckley et al.,
"General-purpose event generators for LHC physics", Phys. Rep. 504 (2011) 145, arXiv:1101.2599 [hep-ph], 89 pp
- J.M. Campbell et al.,
"Event Generators for High-Energy Physics Experiments", for Snowmass 2021, arXiv:2203.11110 [hep-ph], 153 pp
- C. Bierlich et al., "A comprehensive guide to the physics and usage of PYTHIA 8.3", accepted by SciPost, arXiv:2203.11601 [hep-ph], 315 pp
- MCnet annual summer schools Monte Carlo network from ~ 10 European universities, see further https://www.montecarlonet.org/, with 2024 school at CERN, 10-14 June
- Other schools arranged by CTEQ, DESY, CERN, ...

The Standard Model in a nutshell

The Standard Model = "particles" + "interactions" with well-defined properties and behaviour.

Particles are spin 1/2 fermions, and

- obey Fermi-Dirac statistics and Pauli exclusion principle,
- can have two spin states, "left" and "right",
- carry unique quantum numbers that are more-or-less well conserved in interactions,
- can be separated into quarks (\Rightarrow hadrons) and leptons,
- come in three generations, distinguished by mass:

$$
\left.\begin{array}{ccc}
& \text { first } & \text { second }
\end{array} \begin{array}{c}
\text { third } \\
\text { quarks }
\end{array} \begin{array}{c}
u \\
d
\end{array}\right) \quad\binom{c}{s} \quad\binom{t}{b}
$$

- have each an antiparticle with opposite quantum numbers but same mass, and
- can only be created or destroyed in fermion-antifermion pairs.

Interactions

Interactions (= forces) come in different kinds.
In the Standard Model these are

- electromagnetism, QED, mediated by the photon γ,
- weak interactions, mediated by the Z^{0}, W^{+}and W^{-},
- strong interactions, QCD, mediated by eight gluons g, and
- mass generation, mediated by Higgs condensate (+ particle).

Among these, only the $W^{ \pm}$does not conserve the number of fermions minus antifermions of each type.
E.g. $u+\bar{d} \rightarrow W^{+} \rightarrow e^{+} \nu_{e}$ but not $u+\bar{c} \rightarrow Z^{0} \rightarrow e^{+} \mu^{-}$.

Gravitation, mediated by gravitons, is not included since (a) it is too weak for any influence on particle physics processes,
(b) attempts to formulate it as a quantum field theory have failed.

Units and scales

$1 \mathrm{fm}=10^{-15} \mathrm{~m} \approx r_{\text {proton }}$ basic distance scale $1 \mathrm{GeV} \approx 1.6 \cdot 10^{-10} \mathrm{~J} \approx m_{\text {proton }} c^{2}$ basic energy scale $c=1 \approx 3 \cdot 10^{23} \mathrm{fm} / \mathrm{s}$, so that t in fm , and p and m in GeV $\hbar=1=\hbar c \approx 0.2 \mathrm{GeV} \cdot \mathrm{fm}$, e.g. to use in $e^{-i p x / \hbar} \rightarrow e^{-i p x}$ $1 \mathrm{mb}=10^{-31} \mathrm{~m}^{2} \Rightarrow 1 \mathrm{fm}^{2}=10 \mathrm{mb}$ $\hbar^{2}=(\hbar c)^{2} \approx 0.4 \mathrm{GeV}^{2} \cdot \mathrm{mb}$ $N=\sigma \int \mathcal{L} \mathrm{d} t \quad($ "experiment $=$ theory \times machine" $)$ e.g. if $\sigma=1 \mathrm{fb}=10^{-12} \mathrm{mb}$,

$$
\begin{aligned}
\mathcal{L} & =10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}=10^{38} \mathrm{~m}^{-2} \mathrm{~s}^{-1}=10^{7} \mathrm{mb}^{-1} \mathrm{~s}^{-1} \\
T & =\int \mathrm{d} t=24 \text { hours } \approx 10^{5} \mathrm{~s},
\end{aligned}
$$

then $N \approx 10^{-12} \cdot 10^{7} \cdot 10^{5}=1$

Lagrangians

Classical Lagrangian $L=T-V=E_{\text {kinetic }}-E_{\text {potential }}$.
Action $S=\int L \mathrm{~d} t$ should be at minimum, $\delta S=0$:

$$
\frac{\partial L}{\partial q}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right) \quad \text { (Euler - Lagrange) }
$$

with q a generalized coordinate and \dot{q} a generalized velocity. In quantum field theory instead Lagrangian density \mathcal{L} :

$$
L=\int \mathcal{L} \mathrm{d}^{3} x \Rightarrow S=\int \mathcal{L} \mathrm{d}^{4} x \quad \Rightarrow \quad \frac{\partial \mathcal{L}}{\partial \varphi}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \varphi\right)}\right)
$$

E.g. for a scalar field φ

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \varphi \partial^{\mu} \varphi-m^{2} \varphi^{2}\right) \quad \Leftrightarrow \quad\left(\partial^{\mu} \partial_{\mu}+m^{2}\right) \varphi=0
$$

i.e. the Klein-Gordon equation.

For $\varphi=e^{-i p x}$ this gives $\left(-p^{2}+m^{2}\right) \varphi=\left(-E^{2}+\mathbf{p}^{2}+m^{2}\right) \varphi=0$.

The electromagnetic potential $A^{\mu}=(V ; \mathbf{A})$ gives

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{Y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

The pure QED Lagrangian is

$$
\mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}=\frac{1}{2}\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right)
$$

Adding (Dirac four-component) fermion fields ψ_{f} with charges Q_{f}

$$
\mathcal{L}=\sum_{f} \bar{\psi}_{f}\left[\gamma^{\mu} i \partial_{\mu}-m_{f}\right] \psi_{f}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-e \sum_{f} Q_{f} \bar{\psi}_{f} \gamma^{\mu} \psi_{f} A_{\mu}
$$

where the last term gives the interactions between the fermions and the electromagnetic field.

The Standard Model groups (1)

Examples:

- $\mathrm{U}(1)$: group elements $g=e^{i \theta}$ are complex numbers on the unit circle. Abelian.
- $\operatorname{SU}(n)$: the set of all complex $n \times n$ matrices M that are unitary $\left(M^{\dagger} M=1\right)$ and have determinant +1 . Non-Abelian.
- $\operatorname{SU}(2)$: has three generators T_{j} - the Pauli matrices:

$$
\sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- $\mathrm{SU}(3)$ has eight generators T_{j} - the Gell-Mann matrices:

$$
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { etc }
$$

The Standard Model groups (2)

Group elements M can operate on column vectors.
In the fundamental representation these are of dimension n.
For infinitesimal "rotations", where all θ_{j} are small,

$$
M=\exp \left(i \sum_{j} \theta_{j} T_{j}\right) \approx 1+i \sum_{j} \theta_{j} T_{j}
$$

so the interesting transformations are given by the T_{j} operations, e.g. in $\mathrm{SU}(2)$

$$
\sigma_{1}\binom{0}{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0}
$$

In the Standard Model the column vectors represent the fermion particles and the T_{j} generators the interaction mediators.

The Standard Model groups (3)

Standard Model " $=$ " $\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ at high energies, which is reduced to $\mathrm{SU}(3)_{c} \times \mathrm{U}(1)_{e m}$ at low energies.

Colour group $\mathrm{SU}(3)_{C}$: each quark q comes in three "colours", "red", "green" and "blue"

$$
\mathrm{q}_{r}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \mathrm{q}_{g}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \mathrm{q}_{b}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Eight gluon states can be defined from the Gell-Mann matrices, e.g.

$$
g_{r \bar{g}}=\frac{\lambda_{1}+i \lambda_{2}}{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

And then matrix multiplication gives that

$$
g_{r} \bar{g} q_{g}=q_{r}
$$

The Standard Model Unbroken Lagrangian

At high energies the $\mathrm{SU}(3)_{C} \times \mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ is exact. Applying our knowledge, its Lagrangian can be written as

$$
\begin{aligned}
\mathcal{L} & =\sum_{f} \bar{\psi}_{f} \gamma^{\mu} i \mathcal{D}_{\mu} \psi_{f}-\frac{1}{4} G_{\mu \nu}^{a} G^{a \mu \nu}-\frac{1}{4} W_{\mu \nu}^{i} W^{i \mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu} \\
\mathcal{D}_{\mu} & =\partial_{\mu}+i g_{3} \frac{\lambda^{a}}{2} G_{\mu}^{a}+i g_{2} \frac{\sigma^{i}}{2} W_{\mu}^{i}+i g_{1} \frac{Y}{2} B_{\mu} \\
F_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}
\end{aligned}
$$

where the G^{a} only act on quarks, and the W^{i} only on the lefthanded fermions.
A represents the potential, F the field tensor and g the coupling of the respective interaction.
The F require an additional third term for non-Abelian groups, where $f^{a b c}$ are group constants.
The Higgs mechanism breaks the electroweak part, but QCD is unaffected, except that quarks gain mass.

Using the Standard Model Lagrangian

- Fermion wave function: $\psi_{f}(x)=u_{f}(p) e^{-i p x}$. $u_{f}(p)$ destroys a fermion f or creates an antifermion \bar{f}, $\bar{u}_{f}(p)$ creates a fermion f or destroys an antifermion \bar{f}, where $u_{f}(p)$ and $\bar{u}_{f}(p)$ are represented by Dirac spinors.
- Vector boson wave function: $A^{\mu}(x)=\epsilon^{\mu}(p) e^{-i p x}$, where ϵ^{μ} is a polarization vector; can create or destroy depending on context.
- Scalar boson wave function: $\phi(x)=1 e^{-i p x}$; can create or destroy.
- Bilinear field combinations describe propagation of "free" particles, e.g. $\bar{\psi}_{f} \gamma^{\mu} i \partial_{\mu} \psi_{f}$.
- Trilinear field combinations describe triple vertices, e.g. $\bar{\psi}_{f} \gamma^{\mu} e Q_{f} A_{\mu} \psi_{f}$.
- Tetralinear field combinations describe quartic vertices.

Spin handling major complicating factor!

Particle lines and vertices

Some $\gamma / Z^{0} / W^{ \pm}$combinations not allowed, e.g. $\gamma \gamma \gamma$ or $\gamma \gamma H$. Quantum number preservation, notably colour and charge. Arbitrary time order, with fermion in \equiv antifermion out.

Feynman diagrams

A Feynman graph is a useful pictorial representation of a process. It can be converted into a matrix element \mathcal{M}, \approx an amplitude, by combining

- incoming and outgoing wave function normalizations,
- internally exchanged particle "propagators", and
- vertex coupling strengths.

Neglecting spin:

$$
\begin{aligned}
\mathcal{M} & \sim\left(\bar{u}_{q}\left(p_{3}\right) u_{q}\left(p_{1}\right)\right)\left(\bar{u}_{q^{\prime}}\left(p_{4}\right) u_{q^{\prime}}\left(p_{2}\right)\right) \frac{1}{p_{g}^{2}} g_{3}^{2} \\
& \sim\left(2 E_{q}\right)\left(2 E_{q^{\prime}}\right) \frac{1}{p_{g}^{2}} g_{3}^{2}=g_{3}^{2} \hat{s} \hat{t} \\
\hat{t} & =\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2} \\
\hat{t} & =\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2}
\end{aligned}
$$

The basic QCD processes

Mandelstam variables

$$
\begin{aligned}
\hat{s} & =\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2} \\
\hat{t} & =\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2} \\
\hat{u} & =\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2}
\end{aligned}
$$

In rest frame, massless limit: $m_{1}=m_{2}=m_{3}=m_{4}=0$

$$
\begin{aligned}
& \hat{s}=E_{\mathrm{CM}}^{2} \\
& \hat{t}=-\frac{\hat{s}}{2}(1-\cos \hat{\theta}) \approx-p_{\perp}^{2} \\
& \hat{u}=-\frac{\hat{s}}{2}(1+\cos \hat{\theta}) \\
& \hat{s}+\hat{t}+\hat{u}=0
\end{aligned}
$$

Six basic $2 \rightarrow 2$ QCD processes:
$q^{\prime}{ }^{\prime} \rightarrow q^{\prime}{ }^{\prime}$
$\mathrm{q} \overline{\mathrm{q}} \rightarrow \mathrm{q}^{\prime} \overline{\mathrm{q}}^{\prime}$
$q \bar{q} \rightarrow \mathrm{gg}$
$\mathrm{qg} \rightarrow \mathrm{qg}$
$\mathrm{gg} \rightarrow \mathrm{q} \overline{\mathrm{q}}$
$\mathrm{gg} \rightarrow \mathrm{gg}$

Cross sections

Consider subprocess $a+b \rightarrow 1+2+\ldots+n$.
If $m_{a}^{2}, m_{b}^{2} \ll \hat{s}=\left(p_{a}+p_{b}\right)^{2}$ then

$$
\begin{aligned}
\mathrm{d} \hat{\sigma} & =\frac{|\mathcal{M}|^{2}}{2 \hat{s}} \mathrm{~d} \Phi_{n} \\
\mathrm{~d} \Phi_{n} & =(2 \pi)^{4} \delta^{(4)}\left(p_{a}+p_{b}-\sum_{i=1}^{n} p_{i}\right) \prod_{i=1}^{n} \frac{\mathrm{~d}^{3} p_{i}}{(2 \pi)^{3} 2 E_{i}} \\
\mathrm{~d} \Phi_{2} & =\frac{\mathrm{d} \hat{t}}{8 \pi \hat{s}}
\end{aligned}
$$

so for process $q q^{\prime} \rightarrow q q^{\prime}$ on preceding page

$$
\begin{aligned}
\mathrm{d} \hat{\sigma} & \approx\left(g_{3}^{2} \frac{\hat{s}}{\hat{t}}\right)^{2} \frac{1}{2 \hat{s}} \frac{\mathrm{~d} \hat{t}}{8 \pi \hat{s}}=\pi\left(\frac{g_{3}^{2}}{4 \pi}\right)^{2} \frac{\mathrm{~d} \hat{t}}{\hat{t}^{2}}=\pi \alpha_{s}^{2} \frac{\mathrm{~d} \hat{t}}{\hat{t}^{2}} \\
& \left.\propto \frac{\mathrm{~d} \cos (\hat{\theta})}{\sin ^{4}(\hat{\theta} / 2)} \quad \text { (Rutherford scattering }\right) \propto \frac{\mathrm{d} p_{\perp}^{2}}{p_{\perp}^{4}}
\end{aligned}
$$

Closeup: $\mathrm{qg} \rightarrow \mathrm{qg}$

Consider $\mathrm{q}(1) \mathrm{g}(2) \rightarrow \mathrm{q}(3) \mathrm{g}(4)$:

$$
\begin{aligned}
& t: p_{\mathrm{g}^{*}}=p_{1}-p_{3} \Rightarrow m_{\mathrm{g}^{*}}^{2}=\left(p_{1}-p_{3}\right)^{2}=\hat{t} \Rightarrow \mathrm{~d} \hat{\sigma} / \mathrm{d} \hat{t} \sim 1 / \hat{t}^{2} \\
& u: p_{\mathrm{q}^{*}}=p_{1}-p_{4} \Rightarrow m_{\mathrm{q}^{*}}^{2}=\left(p_{1}-p_{4}\right)^{2}=\hat{u} \Rightarrow \mathrm{~d} \hat{\sigma} / \mathrm{d} \hat{t} \sim-1 / \hat{s} \hat{u} \\
& s: p_{\mathrm{q}^{*}}=p_{1}+p_{2} \Rightarrow m_{\mathrm{q}^{*}}^{2}=\left(p_{1}+p_{2}\right)^{2}=\hat{s} \Rightarrow \mathrm{~d} \hat{\sigma} / \mathrm{d} \hat{t} \sim 1 / \hat{s}^{2}
\end{aligned}
$$

Contribution of each sub-graph is gauge-dependent, only sum is well-defined:

$$
\frac{\mathrm{d} \hat{\sigma}}{\mathrm{~d} \hat{t}}=\frac{\pi \alpha_{\mathrm{s}}^{2}}{\hat{s}^{2}}\left[\frac{\hat{s}^{2}+\hat{u}^{2}}{\hat{t}^{2}}+\frac{4}{9} \frac{\hat{s}}{(-\hat{u})}+\frac{4}{9} \frac{(-\hat{u})}{\hat{s}}\right]
$$

Composite beams

In reality all beams are composite:
$p: q, g, \bar{q}, \ldots$
$e^{-}: e^{-}, \gamma, e^{+}, \ldots$
$\gamma: e^{ \pm}, q, \bar{q}, g$

Factorization

$$
\sigma^{A B}=\sum_{i, j} \iint \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{i}^{(A)}\left(x_{1}, Q^{2}\right) f_{j}^{(B)}\left(x_{2}, Q^{2}\right) \int \mathrm{d} \hat{\sigma}_{i j}
$$

x : momentum fraction, e.g. $p_{i}=x_{1} p_{A} ; p_{j}=x_{2} p_{B}$
Q^{2} : factorization scale, "typical momentum transfer scale"
Factorization only proven for a few cases, like γ^{*} / Z^{0} prodution, and strictly speaking not correct e.g. for jet production, but good first approximation and unsurpassed physics insight.

Couplings

Divergences in higher-order calculations \Rightarrow renormalization \Rightarrow couplings run, i.e. depend on energy scale of process.
Small effect for $\alpha_{e m}$ (and $\alpha_{1}, \alpha_{2}, \sin ^{2} \theta_{W}$), but big for $\alpha_{s}=\alpha_{3}$.

Small Q :
large α_{s},
"infrared slavery"
= "confinement",
perturbation theory fails

Large Q :
small α_{s},
"asymptotic freedom",
perturbation theory applicable

Also quark masses run!

Hadrons

Confinement: no free quarks or gluons, but bound in colour singlets - hadrons.
mesons: $q \bar{q}$

baryons: qqq

Examples mesons:
$\pi^{+}=u \bar{d}$
$\pi^{0}=(u \bar{u}-d \bar{d}) / \sqrt{2}$
$\pi^{-}=d \bar{u}$
$K^{+}=u \bar{s}$
Exampels baryons:
$p=u u d$
$n=u d d$
$\Lambda^{0}=$ sud
$\Omega^{-}=s s s$

+ spin, orbital and radial excitations.

QCD scales

Renormalization group equations \Rightarrow

$$
\alpha_{S}\left(Q^{2}\right)=\frac{12 \pi}{\left(33-2 n_{f}\right) \ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}+\cdots
$$

where n_{f} is the number of quarks with $m_{\mathrm{q}}<Q$, usually 5 . α_{S} continuous at flavour thresholds $\Rightarrow \Lambda_{\mathrm{QCD}} \rightarrow \Lambda_{\mathrm{QCD}}^{\left(n_{f}\right)}$.

Confinement scale $\Lambda_{\mathrm{QCD}} \approx 0.2 \mathrm{GeV} ; \alpha_{\mathrm{S}}\left(\Lambda_{\mathrm{QCD}}\right)=\infty$
$1 / \Lambda_{\mathrm{QCD}} \approx 0.2 \mathrm{GeV} \cdot \mathrm{fm} / 0.2 \mathrm{GeV}=1 \mathrm{fm}$
hard QCD: $Q \gg \Lambda_{\mathrm{QCD}}$ such that $\alpha_{\mathrm{S}}(Q) \ll 1$; say $Q \geq 10 \mathrm{GeV}$ soft $\mathrm{QCD}: Q \leq \Lambda_{\mathrm{QCD}}$; in reality $Q \leq 2 \mathrm{GeV}$

Higher orders and parton showers

$((p))$In QED, accelerated charges give rise to radiation; this is the principle of a radio transmitter! Also for deceleration: bremsstrahlung.

Dipole in QCD:

The more violent the acceleration/deceleration, the higher frequencies/energies can be emitted.
Track emission process as repeated branchings, where each can take a non-negligible energy fraction.
QED: $\mathrm{f} \rightarrow \mathrm{f} \gamma, \gamma \rightarrow \mathrm{f} \overline{\mathrm{f}}$ (f any charged fermion)
QCD: $\mathrm{q} \rightarrow \mathrm{qg}, \mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}, \mathrm{g} \rightarrow \mathrm{gg}$ (q any quark)
Matrix element: exact as method, but limited by complexity.
Parton showers: approximation to construct "complete" events.
Match \& merge: combine the best of the two.

Multiparton interactions (MPIs)

In pp collisions t-channel exchange of gluons dominate:

Diverges like $\mathrm{d} p_{\perp}^{2} / p_{\perp}^{4}$, also with PDF included.
At LHC, with $p_{\perp}>5 \mathrm{GeV}, \sigma_{2 \rightarrow 2} \approx 100 \mathrm{mb} \approx \sigma_{\text {total }}$
(cf. $\sigma_{\text {total }} \sim \pi\left(2 r_{\mathrm{p}}\right)^{2} \approx \pi(2 \cdot 0.85 \mathrm{fm})^{2} \approx 9 \mathrm{fm}^{2}=90 \mathrm{mb}$).
Implies multiple $2 \rightarrow 2$ processes: multiparton interactions.

Naively $p_{\perp \text { min }} \sim 1 / r_{\mathrm{p}} \sim \Lambda_{\mathrm{QCD}}$,
but more relevant is typical separation between colour and anticolour, which if $r_{\text {sep }} \sim r_{\mathrm{p}} / 10$ implies $p_{\perp \text { min }} \sim 2 \mathrm{GeV}$, a better data fit.

Hadronization

QCD does not allow free colour charges!

In the decay of a colour singlet, say $\left(\mathrm{e}^{+} \mathrm{e}^{-}\right) \rightarrow \mathrm{Z}^{0} \rightarrow \mathrm{q} \overline{\mathrm{q}}$, the q and $\overline{\mathrm{q}}$ move apart but remain connected by a "string".
Can be viewed as an elongated hadron with radius $r_{\text {string }} \approx r_{\mathrm{p}}$ ($\times \sqrt{2 / 3}$ since $3 \rightarrow 2$ dimensions).
Pulling out string costs energy: string tension $\kappa \approx 1 \mathrm{GeV} / \mathrm{fm}$.
 String fragmentation: a new $q^{\prime} \bar{q}^{\prime}$ pair is created inside the field between the original $q \bar{q}$ one, with colours screening these endpoints. Thus the big string breaks into two smaller ones. This can be repeated to give a sequence of "small" strings \approx hadrons.
In sum: each quark remains confined during string fragmentation, but the partner will change.

Jets

A jet: a spray of hadrons moving out in \sim the same direction.

No unique definition, but "in the eye of the beholder".

At the LHC most commonly found in the $\left(\eta, \varphi, E_{\perp}\right)$ space with the anti- k_{\perp} algorithm.

Naively a jet is associated with an outgoing quark or gluon of the hard process, but modified by ISR, FSR, MPI, hadronization.

The structure of an event - 1

Warning: schematic only, everything simplified, nothing to scale, ...

Incoming beams: parton densities

The structure of an event - 2

Hard subprocess: described by matrix elements

The structure of an event - 3

Resonance decays: correlated with hard subprocess

The structure of an event - 4

Initial-state radiation: spacelike parton showers

The structure of an event - 5

Final-state radiation: timelike parton showers

The structure of an event - 6

Multiple parton-parton interactions ...

The structure of an event - 7

... with its initial- and final-state radiation

The structure of an event - 8

Beam remnants and other outgoing partons

The structure of an event - 9

Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

The structure of an event - 10

The structure of an event - 11

A collected event view

Hard Interaction

- Resonance Decays
- MECs, Matching \& Merging
- FSR
- ISR*QEDWeak Showers
Hard Onium
Multiparton InteractionsBeam Remnants*
\square Strings
© Ministrings / Clusters
Colour Reconnections
- String InteractionsBose-Einstein \& Fermi-DiracPrimary HadronsSecondary Hadrons
\square Hadronic Reinteractions
(*: incoming lines are crossed)

A tour to Monte Carlo

... because Einstein was wrong: God does throw dice!
Quantum mechanics: amplitudes \Longrightarrow probabilities
Anything that possibly can happen, will! (but more or less often)

Event generators: trace evolution of event structure. Random numbers \approx quantum mechanical choices.

The Monte Carlo method

Want to generate events in as much detail as Mother Nature \Longrightarrow get average and fluctutations right \Longrightarrow make random choices, \sim as in nature

$$
\sigma_{\text {final state }}=\sigma_{\text {hard process }} \mathcal{P}_{\text {tot,hard process } \rightarrow \text { final state }}
$$

(appropriately summed \& integrated over non-distinguished final states) where $\mathcal{P}_{\text {tot }}=\mathcal{P}_{\text {res }} \mathcal{P}_{\text {ISR }} \mathcal{P}_{\text {FSR }} \mathcal{P}_{\text {MPI }} \mathcal{P}_{\text {remnants }} \mathcal{P}_{\text {hadronization }} \mathcal{P}_{\text {decays }}$

$$
\text { with } \mathcal{P}_{i}=\prod_{j} \mathcal{P}_{i j}=\prod_{j} \prod_{k} \mathcal{P}_{i j k}=\ldots \text { in its turn }
$$

\Longrightarrow divide and conquer
an event with n particles involves $\mathcal{O}(10 n)$ random choices, (flavour, mass, momentum, spin, production vertex, lifetime, ...) LHC: ~ 100 charged and ~ 200 neutral (+ intermediate stages) \Longrightarrow several thousand choices (of $\mathcal{O}(100)$ different kinds)

Why generators?

- Allow theoretical and experimental studies of complex multiparticle physics
- Large flexibility in physical quantities that can be addressed
- Vehicle of ideology to disseminate ideas from theorists to experimentalists
Can be used to
- predict event rates and topologies
\Rightarrow can estimate feasibility
- simulate possible backgrounds
\Rightarrow can devise analysis strategies
- study detector requirements
\Rightarrow can optimize detector/trigger design
- study detector imperfections
\Rightarrow can evaluate acceptance corrections

Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC pp physics studies, covering all aspects above, but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978): originated in hadronization studies, still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984): originated in coherent showers (angular ordering), cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC ++ , begun in 2000): had own matrix-element calculator/generator originated with matching \& merging issues.

Delphi and Pythia

Delphi: 120 km west of Athens, on the slopes of Mount Parnassus. Python: giant snake killed by Apollon.
The Oracle of Delphi: ca. 1000 B.C. - 390 A.D.
Pythia: local prophetess/priestess.
Key role in myths and history, notably in
"The Histories" by Herodotus of Halicarnassus ($\sim 482-420$ B.C.)

Other Relevant Software

Some examples (with apologies for many omissions), usually combined for maximum effect:

- Event generators: EPOS, Hljing, Sibyll, DPMjet, Genie
- Matrix-element generators: MadGraph_aMC@NLO, Sherpa, Helac, Whizard, CompHep, CalcHep, GoSam
- Matrix element libraries: AlpGen, POWHEG BOX, MCFM, NLOjet++, VBFNLO, BlackHat, Rocket
- Special BSM scenarios: Prospino, Charybdis, TrueNoir
- Mass spectra and decays: SOFTSUSY, SPHENO, HDecay, SDecay
- Feynman rule generators: FeynRules
- PDF libraries: LHAPDF
- Resummed (p_{\perp}) spectra: ResBos
- Approximate loops: LoopSim
- Parton showers: Ariadne, Vincia, Dire, Deductor, PanScales
- Jet finders: anti- k_{\perp} and FastJet
- Analysis packages: Rivet, Professor, MCPLOTS
- Detector simulation: GEANT, Delphes
- Constraints (from cosmology etc): DarkSUSY, MicrOmegas
- Standards: PDG identity codes, LHA, LHEF, SLHA, Binoth LHA, HepMC

Putting it together

Standardized interfaces essential!

PDG particle codes

A. Fundamental objects

1	d	11	e^{-}	21	g	32	$\mathrm{Z}^{\prime 0}$	39	G	add - sign for
2	u	12	ν_{e}	22	γ	33	$\mathrm{Z}^{\prime \prime}$	41	R^{0}	antiparticle,
3	s	13	μ^{-}	23	Z^{0}	34	$\mathrm{~W}^{\prime+}$	42	LQ	where appropriate
4	c	14	ν_{μ}	24	$\mathrm{~W}^{+}$	35	H^{0}	51	DM_{0}	
5	b	15	τ^{-}	25	$\mathrm{~h}^{0}$	36	$\mathrm{~A}^{0}$			+ diquarks, SUSY,
6	t	16	ν_{τ}			37	H^{+}	\ldots	\ldots	technicolor,..

B. Mesons

$$
100\left|q_{1}\right|+10\left|q_{2}\right|+(2 s+1) \text { with }\left|q_{1}\right| \geq\left|q_{2}\right|
$$

particle if heaviest quark u, \bar{s}, c, \bar{b}; else antiparticle

111	π^{0}	311	$\mathrm{~K}^{0}$	130	$\mathrm{~K}_{\mathrm{L}}^{0}$	221	η^{0}	411	D^{+}	431	$\mathrm{D}_{\mathrm{s}}^{+}$
211	π^{+}	321	$\mathrm{~K}^{+}$	310	$\mathrm{~K}_{\mathrm{S}}^{0}$	331	$\eta^{\prime 0}$	421	D^{0}	443	$\mathrm{~J} / \psi$

C. Baryons
$1000 q_{1}+100 q_{2}+10 q_{3}+(2 s+1)$
with $q_{1} \geq q_{2} \geq q_{3}$, or Λ-like $q_{1} \geq q_{3} \geq q_{2}$

2112	n	3122	Λ^{0}	2224	Δ^{++}	3214	$\Sigma^{* 0}$
2212	p	3212	Σ^{0}	1114	Δ^{-}	3334	Ω^{-}

Les Houches LHA/LHEF event record

At initialization:

- beam kinds and E's
- PDF sets selected
- weighting strategy
- number of processes
- number of particles
- process type
- event weight
- process scale
- α_{em}
- α_{S}
- (PDF information)

Per process in initialization:

- integrated σ
- error on σ
- maximum $\mathrm{d} \sigma / \mathrm{d}(\mathrm{PS})$
- process label

Per particle in event:

- PDG particle code
- status (decayed?)
- 2 mother indices
- colour \& anticolour indices
- $\left(p_{x}, p_{y}, p_{z}, E\right), m$
- lifetime τ
- spin/polarization

Monte Carlo techniques

"Spatial" problems: no memory/ordering
(1) Integrate a function
(2) Pick a point at random according to a probability distribution
"Temporal" problems: has memory
(1) Radioactive decay: probability for a radioactive nucleus to decay at time t, given that it was created at time 0
In reality combined into multidimensional problems:
(1) Random walk (variable step length and direction)
(2) Charged particle propagation through matter (stepwise loss of energy by a set of processes)
(3) Parton showers (cascade of successive branchings)
(9) Multiparticle interactions (ordered multiple subcollisions)

Assume algorithm that returns "random numbers" R, uniformly distributed in range $0<R<1$ and uncorrelated.

Integration and selection

Assume function $f(x)$, studied range $x_{\text {min }}<x<x_{\text {max }}$, where $f(x) \geq 0$ everywhere

Two connected standard tasks:
1 Calculate (approximatively)

$$
\int_{x_{\min }}^{x_{\max }} f\left(x^{\prime}\right) d x^{\prime}
$$

2 Select x at random according to $f(x)$
In step $2 f(x)$ is viewed as "probability distribution" with implicit normalization to unit area, and then step 1 provides overall correct normalization.

Integral as an area/volume

Theorem

An n-dimensional integration \equiv an $n+1$-dimensional volume

$$
\int f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} \equiv \iint_{0}^{f\left(x_{1}, \ldots, x_{n}\right)} 1 \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n} \mathrm{~d} x_{n+1}
$$

since $\int_{0}^{f(x)} 1 \mathrm{~d} y=f(x)$.

Integral as an area/volume

Theorem

An n-dimensional integration \equiv an $n+1$-dimensional volume

$$
\int f\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} \equiv \iint_{0}^{f\left(x_{1}, \ldots, x_{n}\right)} 1 \mathrm{~d} x_{1} \ldots \mathrm{~d} x_{n} \mathrm{~d} x_{n+1}
$$

since $\int_{0}^{f(x)} 1 \mathrm{~d} y=f(x)$.
So, for $1+1$ dimension, selection of x according to $f(x)$ is equivalent to uniform selection of (x, y) in the area
$x_{\text {min }}<x<x_{\text {max }}, 0<y<f(x)$.
Therefore

$$
\int_{x_{\min }}^{x} f\left(x^{\prime}\right) \mathrm{d} x^{\prime}=R \int_{x_{\min }}^{x_{\max }} f\left(x^{\prime}\right) \mathrm{d} x^{\prime}
$$

(area to left of selected x is uniformly distributed fraction of whole area)

Analytical solution

If know primitive function $F(x)$ and know inverse $F^{-1}(y)$ then

$$
\begin{aligned}
F(x)-F\left(x_{\min }\right) & =R\left(F\left(x_{\max }\right)-F\left(x_{\min }\right)\right)=R A_{\mathrm{tot}} \\
\Longrightarrow x & =F^{-1}\left(F\left(x_{\min }\right)+R A_{\mathrm{tot}}\right)
\end{aligned}
$$

Proof: introduce $z=F\left(x_{\min }\right)+R A_{\text {tot }}$. Then

$$
\frac{\mathrm{d} \mathcal{P}}{\mathrm{~d} x}=\frac{\mathrm{d} \mathcal{P}}{\mathrm{~d} R} \frac{\mathrm{~d} R}{\mathrm{~d} x}=1 \frac{1}{\frac{\mathrm{dx}}{\mathrm{~d} R}}=\frac{1}{\frac{\mathrm{dx}}{\mathrm{~d} z} \frac{\mathrm{~d} z}{\mathrm{~d} R}}=\frac{1}{\frac{\mathrm{~d} F^{-1}(z)}{\mathrm{d} z} \frac{\mathrm{~d} z}{\mathrm{~d} R}}=\frac{\frac{\mathrm{d} F(x)}{\mathrm{d} x}}{\frac{\mathrm{~d} z}{\mathrm{~d} R}}=\frac{f(x)}{A_{\mathrm{tot}}}
$$

Hit-and-miss solution

If $f(x) \leq f_{\text {max }}$ in $x_{\text {min }}<x<x_{\text {max }}$ use interpretation as an area

1 select

$$
x=x_{\min }+R\left(x_{\max }-x_{\min }\right)
$$

2 select $y=R f_{\max }$ (new R !)
3 while $y>f(x)$ cycle to 1

Integral as by-product:

$$
I=\int_{x_{\min }}^{x_{\max }} f(x) \mathrm{d} x=f_{\max }\left(x_{\max }-x_{\min }\right) \frac{N_{\mathrm{acc}}}{N_{\text {try }}}=A_{\text {tot }} \frac{N_{\mathrm{acc}}}{N_{\text {try }}}
$$

Binomial distribution with $p=N_{\text {acc }} / N_{\text {try }}$ and $q=N_{\text {fail }} / N_{\text {try }}$, so error

$$
\frac{\delta l}{l}=\frac{A_{\text {tot }} \sqrt{p q / N_{\text {try }}}}{A_{\text {tot }} p}=\sqrt{\frac{q}{p N_{\text {try }}}}=\sqrt{\frac{q}{N_{\mathrm{acc}}}}<\frac{1}{\sqrt{N_{\mathrm{acc}}}}
$$

Importance sampling

Improved version of hit-and-miss:
If $f(x) \leq g(x)$ in
$x_{\text {min }}<x<x_{\text {max }}$
and $G(x)=\int g\left(x^{\prime}\right) \mathrm{d} x^{\prime}$ is simple and $G^{-1}(y)$ is simple

1 select x according to $g(x)$ distribution
2 select $y=R g(x)$ (new $R!$)

3 while $y>f(x)$ cycle to 1

If $f(x) \leq g(x)=\sum_{i} g_{i}(x)$, where all g_{i} "nice" ($G_{i}(x)$ invertible) but $g(x)$ not

1 select i with relative probability

$$
A_{i}=\int_{x_{\min }}^{x_{\max }} g_{i}\left(x^{\prime}\right) \mathrm{d} x^{\prime}
$$

2 select x according to $g_{i}(x)$

3 select $y=R g(x)=R \sum_{i} g_{i}(x)$
4 while $y>f(x)$ cycle to 1
Works since

$$
\int f(x) \mathrm{d} x=\int \frac{f(x)}{g(x)} \sum_{i} g_{i}(x) \mathrm{d} x=\sum_{i} A_{i} \int \frac{g_{i}(x) \mathrm{d} x}{A_{i}} \frac{f(x)}{g(x)}
$$

Temporal methods: radioactive decays - 1

Consider "radioactive decay":
$N(t)=$ number of remaining nuclei at time t
but normalized to $N(0)=N_{0}=1$ instead, so equivalently $N(t)=$ probability that (single) nucleus has not decayed by time t $P(t)=-\mathrm{d} N(t) / \mathrm{d} t=$ probability for it to decay at time t

Naively $P(t)=c \Longrightarrow N(t)=1-c t$.
Wrong! Conservation of probability driven by depletion:
a given nucleus can only decay once
Correctly
$P(t)=c N(t) \Longrightarrow N(t)=\exp (-c t)$
i.e. exponential dampening
$P(t)=c \exp (-c t)$

There is memory in time!

Temporal methods: radioactive decays - 2

For radioactive decays $P(t)=c N(t)$, with c constant, but now generalize to time-dependence:

$$
P(t)=-\frac{\mathrm{d} N(t)}{\mathrm{d} t}=f(t) N(t) ; \quad f(t) \geq 0
$$

Standard solution:

$$
\frac{\mathrm{d} N(t)}{\mathrm{d} t}=-f(t) N(t) \Longleftrightarrow \frac{\mathrm{d} N}{N}=\mathrm{d}(\ln N)=-f(t) \mathrm{d} t
$$

$\ln N(t)-\ln N(0)=-\int_{0}^{t} f\left(t^{\prime}\right) \mathrm{d} t^{\prime} \Longrightarrow N(t)=\exp \left(-\int_{0}^{t} f\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)$

$$
F(t)=\int^{t} f\left(t^{\prime}\right) \mathrm{d} t^{\prime} \Longrightarrow N(t)=\exp (-(F(t)-F(0)))
$$

Assuming $F(\infty)=\infty$, i.e. always decay, sooner or later:

$$
N(t)=R \quad \Longrightarrow \quad t=F^{-1}(F(0)-\ln R)
$$

The veto algorithm: problem

What now if $f(t)$ has no simple $F(t)$ or F^{-1} ? Hit-and-miss not good enough, since for $f(t) \leq g(t), g$ "nice",

$$
\begin{aligned}
t=G^{-1}(G(0)-\ln R) & \Longrightarrow N(t)=\exp \left(-\int_{0}^{t} g\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right) \\
P(t)=-\frac{\mathrm{d} N(t)}{\mathrm{d} t} & =g(t) \exp \left(-\int_{0}^{t} g\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)
\end{aligned}
$$

and hit-or-miss provides rejection factor $f(t) / g(t)$, so that

$$
P(t)=f(t) \exp \left(-\int_{0}^{t} g\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)
$$

(modulo overall normalization), where it ought to have been

$$
P(t)=f(t) \exp \left(-\int_{0}^{t} f\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)
$$

The veto algorithm

1 start with $i=0$ and $t_{0}=0$
$2 i=i+1$
$3 t=t_{i}=G^{-1}\left(G\left(t_{i-1}\right)-\ln R\right)$, i.e $t_{i}>t_{i-1}$
$4 \quad y=R g(t)$
5 while $y>f(t)$ cycle to 2

That is, when you fail, you keep on going from the time when you failed, and do not restart at time $t=0$. (Memory!)

The veto algorithm: proof - 1

Study probability to have i intermediate failures before success:
Define $S_{g}\left(t_{a}, t_{b}\right)=\exp \left(-\int_{t_{a}}^{t_{b}} g\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right)$ ("Sudakov factor")

$$
\begin{aligned}
P_{0}(t) & =P\left(t=t_{1}\right)=g(t) S_{g}(0, t) \frac{f(t)}{g(t)}=f(t) S_{g}(0, t) \\
P_{1}(t) & =P\left(t=t_{2}\right) \\
& =\int_{0}^{t} \mathrm{~d} t_{1} g\left(t_{1}\right) S_{g}\left(0, t_{1}\right)\left(1-\frac{f\left(t_{1}\right)}{g\left(t_{1}\right)}\right) g(t) S_{g}\left(t_{1}, t\right) \frac{f(t)}{g(t)} \\
& =f(t) S_{g}(0, t) \int_{0}^{t} \mathrm{~d} t_{1}\left(g\left(t_{1}\right)-f\left(t_{1}\right)\right)=P_{0}(t) I_{g-f}
\end{aligned}
$$

$$
P_{2}(t)=\cdots=P_{0}(t) \int_{0}^{t} \mathrm{~d} t_{1}\left(g\left(t_{1}\right)-f\left(t_{1}\right)\right) \int_{t_{1}}^{t} \mathrm{~d} t_{2}\left(g\left(t_{2}\right)-f\left(t_{2}\right)\right)
$$

$$
=P_{0}(t) \int_{0}^{t} \mathrm{~d} t_{1}\left(g\left(t_{1}\right)-f\left(t_{1}\right)\right) \int_{0}^{t} \mathrm{~d} t_{2}\left(g\left(t_{2}\right)-f\left(t_{2}\right)\right) \theta\left(t_{2}-t_{1}\right)
$$

$$
=P_{0}(t) \frac{1}{2}\left(\int_{0}^{t} \mathrm{~d} t_{1}\left(g\left(t_{1}\right)-f\left(t_{1}\right)\right)\right)^{2}=P_{0}(t) \frac{1}{2} I_{g-f}^{2}
$$

The veto algorithm: proof - 2

$$
\begin{aligned}
& \text { Generally, } i \text { intermediate times } \\
& \text { corresponds to } i \text { ! } \\
& \text { equivalent ordering regions. } \\
& P_{i}(t)=P_{0}(t) \frac{1}{i!} I_{g-f}^{i} \\
& P(t)=\sum_{i=0}^{\infty} P_{i}(t)=P_{0}(t) \sum_{i=0}^{\infty} \frac{l_{g-f}^{i}}{i!}=P_{0}(t) \exp \left(l_{g-f}\right) \\
& =f(t) \exp \left(-\int_{0}^{t} g\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right) \exp \left(\int_{0}^{t}\left(g\left(t^{\prime}\right)-f\left(t^{\prime}\right)\right) \mathrm{d} t^{\prime}\right) \\
& =f(t) \exp \left(-\int_{0}^{t} f\left(t^{\prime}\right) d t^{\prime}\right)
\end{aligned}
$$

The winner takes it all

Assume "radioactive decay" with two possible decay channels $1 \& 2$

$$
P(t)=-\frac{\mathrm{d} N(t)}{\mathrm{d} t}=f_{1}(t) N(t)+f_{2}(t) N(t)
$$

Alternative 1:
use normal veto algorithm with $f(t)=f_{1}(t)+f_{2}(t)$.
Once t selected, pick decays 1 or 2 in proportions $f_{1}(t): f_{2}(t)$.
Alternative 2:
The winner takes it all
select t_{1} according to $P_{1}\left(t_{1}\right)=f_{1}\left(t_{1}\right) N_{1}\left(t_{1}\right)$
and t_{2} according to $P_{2}\left(t_{2}\right)=f_{2}\left(t_{2}\right) N_{2}\left(t_{2}\right)$,
i.e. as if the other channel did not exist.

If $t_{1}<t_{2}$ then pick decay 1 , while if $t_{2}<t_{1}$ pick decay 2 .
Equivalent by simple proof.

Radioactive decay as perturbation theory

Assume we don't know about exponential function. Recall wrong solution, starting from $N(t)=N_{0}(t)=1$:

$$
\frac{\mathrm{d} N}{\mathrm{~d} t}=-c N=-c N_{0}(t)=-c \Rightarrow N(t)=N_{1}(t)=1-c t
$$

Now plug in $N_{1}(t)$, hoping to find better approximation:
$\frac{\mathrm{d} N}{\mathrm{~d} t}=-c N_{1}(t) \Rightarrow N(t)=N_{2}(t)=1-c \int_{0}^{t}\left(1-c t^{\prime}\right) \mathrm{d} t^{\prime}=1-c t+\frac{(c t)^{2}}{2}$
and generalize to

$$
N_{i+1}(t)=1-c \int_{0}^{t} N_{i}\left(t^{\prime}\right) \mathrm{d} t^{\prime} \Rightarrow N_{i+1}(t)=\sum_{k=0}^{i+1} \frac{(-c t)^{k}}{k!}
$$

which recovers exponential $e^{-c t}$ for $i \rightarrow \infty$.
Reminiscent of (QED, QCD) perturbation theory with $c \rightarrow \alpha f$.

Summary

Main event components:

- parton distributions
- hard subprocesses
- initial-state radiation
- final-state interactions
- multiparton interactions
- beam remnants
- hadronization
- decays
- total cross sections

Main Monte Carlo methods:

- integration as an area
- analytical solution
- hit-and-miss
- importance sampling
- multichannel
- the veto algorithm
- the winner takes it all

