Introduction to Event Generators

Part 2: Parton Showers and Jet Physics

Torbjörn Sjöstrand

Department of Physics
Lund University

Terascale Monte Carlo School 2024, DESY

Multijets - the need for Higher Orders

An event with 6 jets taken on April 4th, 2010. The jets have calibrated transverse momenta between 30 GeV and 70 GeV and are well separated in the detector.
$2 \rightarrow 6$ process or $2 \rightarrow 2$ dressed up by bremsstrahlung!?

Perturbative QCD

Perturbative calculations \Rightarrow Matrix Elements.
Improved calculational techniques allows
\star more legs (= final-state partons)
\star more loops (= virtual partons not visible in final state)
but with limitations, especially for loops.
Parton Showers:
approximations to matrix element behaviour, most relevant for multiple emissions at low energies and/or angles. Main topic of this lecture.

Matching and Merging:
methods to combine matrix elements (at high scales)
with parton showers (at low scales),
with a consistent and smooth transition.
Huge field at LHC.

In the beginning: Electrodynamics

An electrical charge, say an electron, is surrounded by a field:

In the beginning: Electrodynamics

An electrical charge, say an electron, is surrounded by a field:
For a rapidly moving charge this field can be expressed in terms of an equivalent flux of photons:

$$
\mathrm{dn}_{\gamma} \approx \frac{2 \alpha_{\mathrm{em}}}{\pi} \frac{\mathrm{~d} \theta}{\theta} \frac{\mathrm{~d} \omega}{\omega}
$$

Equivalent Photon Approximation,

Muncmunn wuwnuwn

vinunininiv
$\cdots \cdots m m$
wouncum or method of virtual quanta (e.g. Jackson)
(Bohr; Fermi; Weiszäcker, Williams ~1934)

In the beginning: Electrodynamics

An electrical charge, say an electron, is surrounded by a field:
For a rapidly moving charge this field can be expressed in terms of an equivalent flux of photons:

$$
\mathrm{dn}_{\gamma} \approx \frac{2 \alpha_{\mathrm{em}}}{\pi} \frac{\mathrm{~d} \theta}{\theta} \frac{\mathrm{~d} \omega}{\omega}
$$

Equivalent Photon Approximation,
 or method of virtual quanta (e.g. Jackson)
(Bohr; Fermi; Weiszäcker, Williams ~1934)
θ : collinear divergence, saved by $m_{\mathrm{e}}>0$ in full expression.
ω : true divergence, $n_{\gamma} \propto \int \mathrm{d} \omega / \omega=\infty$, but $E_{\gamma} \propto \int \omega \mathrm{d} \omega / \omega$ finite.
These are virtual photons: continuously emitted and reabsorbed.

In the beginning: Bremsstrahlung

When an electron is kicked into a new direction, the field does not have time fully to react:

- Initial State Radiation (ISR): part of it continues \sim in original direction of e
- Final State Radiation (FSR):
the field needs to be regenerated around outgoing e, and transients are emitted \sim around outgoing e direction

Emission rate provided by equivalent photon flux in both cases.
Approximate cutoffs related to timescale of process: the more violent the hard collision, the more radiation!

In the beginning: Exponentiation

Assume $\sum E_{\gamma} \ll E_{\mathrm{e}}$ such that energy-momentum conservation is not an issue. Then

$$
\mathrm{d} \mathcal{P}_{\gamma}=\mathrm{dn}_{\gamma} \approx \frac{2 \alpha_{\mathrm{em}}}{\pi} \frac{\mathrm{~d} \theta}{\theta} \frac{\mathrm{~d} \omega}{\omega}
$$

is the probability to find a photon at ω and θ, irrespectively of which other photons are present.
Uncorrelated \Rightarrow Poissonian number distribution:

$$
\mathcal{P}_{i}=\frac{\left\langle n_{\gamma}\right\rangle^{i}}{i!} e^{-\left\langle n_{\gamma}\right\rangle}
$$

with

$$
\left\langle n_{\gamma}\right\rangle=\int_{\theta_{\min }}^{\theta_{\max }} \int_{\omega_{\min }}^{\omega_{\max }} \mathrm{dn}_{\gamma} \approx \frac{2 \alpha_{\mathrm{em}}}{\pi} \ln \left(\frac{\theta_{\max }}{\theta_{\min }}\right) \ln \left(\frac{\omega_{\max }}{\omega_{\min }}\right)
$$

Note that $\int \mathrm{d} \mathcal{P}_{\gamma}=\int \mathrm{dn}_{\gamma}>1$ is not a problem: proper interpretation is that many photons are emitted.
Exponentiation: reinterpretation of $\mathrm{d} \mathcal{P}_{\gamma}$ into Poissonian.

So how is QCD the same?

- A quark is surrounded by a gluon field

$$
\mathrm{d} \mathcal{P}_{\mathrm{g}}=\mathrm{dn}_{\mathrm{g}} \approx \frac{8 \alpha_{\mathrm{s}}}{3 \pi} \frac{\mathrm{~d} \theta}{\theta} \frac{\mathrm{~d} \omega}{\omega}
$$

i.e. only differ by substitution $\alpha_{\mathrm{em}} \rightarrow 4 \alpha_{\mathrm{s}} / 3$.

- An accelerated quark emits gluons with collinear and soft divergences,

- Typically $\left\langle n_{\mathrm{g}}\right\rangle=\int \mathrm{dn}_{\mathrm{g}} \gg 1$ since $\alpha_{\mathrm{s}} \gg \alpha_{\mathrm{em}}$ \Rightarrow even more pressing need for exponentiation.

So how is QCD different?

- QCD is non-Abelian, so a gluon is charged and is surrounded by its own field: emission rate $4 \alpha_{\mathrm{s}} / 3 \rightarrow 3 \alpha_{\mathrm{s}}$, field structure more complicated, interference effects more important.
- $\alpha_{s}\left(Q^{2}\right)$ diverges for $Q^{2} \rightarrow \Lambda_{Q C D}^{2}$, with $\Lambda_{\mathrm{QCD}} \sim 0.2 \mathrm{GeV}=1 \mathrm{fm}^{-1}$.
- Confinement: gluons below Λ_{QCD}
 not resolved \Rightarrow de facto cutoffs.

Unclear separation between
"accelerated charge" and "emitted radiation":
many possible Feynman graphs \approx histories.

FSR $=$ Final-State Radiation $=$ timelike shower
$Q_{i}^{2} \sim m^{2}>0$ decreasing
ISR $=$ Initial-State Radiation $=$ spacelike showers
$Q_{i}^{2} \sim-m^{2}>0$ increasing

Why "time" like and "space" like?

Consider four-momentum conservation in a branching $a \rightarrow b c$

$$
\begin{aligned}
\mathbf{p}_{\perp a}=0 & \Rightarrow \mathbf{p}_{\perp c}=-\mathbf{p}_{\perp b} \\
p_{+}=E+p_{\mathrm{L}} & \Rightarrow p_{+a}=p_{+b}+p_{+c} \\
p_{-}=E-p_{\mathrm{L}} & \Rightarrow p_{-a}=p_{-b}+p_{-c}
\end{aligned}
$$

Define $p_{+b}=z p_{+a}, \quad p_{+c}=(1-z) p_{+a}$
Use $p_{+} p_{-}=E^{2}-p_{\mathrm{L}}^{2}=m^{2}+p_{\perp}^{2}$

$$
\begin{gathered}
\frac{m_{a}^{2}+p_{\perp a}^{2}}{p_{+a}}=\frac{m_{b}^{2}+p_{\perp b}^{2}}{z p_{+a}}+\frac{m_{c}^{2}+p_{\perp c}^{2}}{(1-z) p_{+a}} \\
\Rightarrow \quad m_{a}^{2}=\frac{m_{b}^{2}+p_{\perp}^{2}}{z}+\frac{m_{c}^{2}+p_{\perp}^{2}}{1-z}=\frac{m_{b}^{2}}{z}+\frac{m_{c}^{2}}{1-z}+\frac{p_{\perp}^{2}}{z(1-z)}
\end{gathered}
$$

Final-state shower: $m_{b}=m_{c}=0 \Rightarrow m_{a}^{2}=\frac{p_{\perp}^{2}}{z(1-z)}>0 \Rightarrow$ timelike Initial-state shower: $m_{a}=m_{c}=0 \Rightarrow m_{b}^{2}=-\frac{p_{\perp}^{2}}{1-z}<0 \Rightarrow$ spacelike

Doublecounting

A $2 \rightarrow n$ graph can be "simplified" to $2 \rightarrow 2$ in different ways:

or deform

ISR
Do not doublecount: $2 \rightarrow 2=$ most virtual $=$ shortest distance (detailed handling of borders \Rightarrow match \& merge)

Final-state radiation

Standard process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{g}$ by two Feynman diagrams:

Final-state radiation

Standard process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q} g}$ by two Feynman diagrams:

$$
\frac{\mathrm{d} \sigma_{\mathrm{ME}}}{\sigma_{0}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{4}{3} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)} \mathrm{d} x_{1} \mathrm{~d} x_{2}
$$

Convenient (but arbitrary) subdivision to "split" radiation:

$$
\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)} \frac{\left(1-x_{1}\right)+\left(1-x_{2}\right)}{x_{3}}=\frac{1}{\left(1-x_{2}\right) x_{3}}+\frac{1}{\left(1-x_{1}\right) x_{3}}
$$

Rewrite for $x_{2} \rightarrow 1$, i.e. $q-g$ collinear limit:

$$
1-x_{2}=\frac{m_{13}^{2}}{E_{\mathrm{cm}}^{2}}=\frac{Q^{2}}{E_{\mathrm{cm}}^{2}} \Rightarrow \mathrm{~d} x_{2}=\frac{\mathrm{d} Q^{2}}{E_{\mathrm{cm}}^{2}}
$$

define z as fraction q retains
in branching $\mathrm{q} \rightarrow \mathrm{qg}$

$$
\begin{aligned}
& x_{1} \approx z \Rightarrow d x_{1} \approx \mathrm{~d} z \\
& x_{3} \approx 1-z
\end{aligned}
$$

$$
\Rightarrow \mathrm{d} \mathcal{P}=\frac{\mathrm{d} \sigma}{\sigma_{0}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} x_{2}}{\left(1-x_{2}\right)} \frac{4}{3} \frac{x_{2}^{2}+x_{1}^{2}}{\left(1-x_{1}\right)} \mathrm{d} x_{1} \approx \frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} \frac{4}{3} \frac{1+z^{2}}{1-z} \mathrm{~d} z
$$

In limit $x_{1} \rightarrow 1$ same result, but for $\bar{q} \rightarrow \bar{q} g$.

$$
\mathrm{d} Q^{2} / Q^{2}=\mathrm{d} m^{2} / m^{2}: \text { "mass (or collinear) singularity" }
$$

$$
\mathrm{d} z /(1-z)=\mathrm{d} \omega / \omega \text { "soft singularity" }
$$

The DGLAP equations

Generalizes to
DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$
\begin{aligned}
\mathrm{d} \mathcal{P}_{a \rightarrow b c} & =\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \\
P_{\mathrm{q} \rightarrow \mathrm{qg}} & =\frac{4}{3} \frac{1+z^{2}}{1-z} \\
P_{\mathrm{g} \rightarrow \mathrm{gg}} & =3 \frac{(1-z(1-z))^{2}}{z(1-z)} \\
P_{\mathrm{g} \rightarrow \mathrm{q} \bar{q}} & =\frac{n_{f}}{2}\left(z^{2}+(1-z)^{2}\right) \quad\left(n_{f}=\text { no. of quark flavours }\right)
\end{aligned}
$$

Universality: any matrix element reduces to DGLAP in collinear limit.

$$
\text { e.g. } \frac{\mathrm{d} \sigma\left(\mathrm{H}^{0} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{~g}\right)}{\mathrm{d} \sigma\left(\mathrm{H}^{0} \rightarrow \mathrm{q} \overline{\mathrm{q}}\right)}=\frac{\mathrm{d} \sigma\left(\mathrm{Z}^{0} \rightarrow \mathrm{q} \overline{\mathrm{q}} \mathrm{~g}\right)}{\mathrm{d} \sigma\left(\mathrm{Z}^{0} \rightarrow \mathrm{q} \overline{\mathrm{q}}\right)} \text { in collinear limit }
$$

The iterative structure

Generalizes to many consecutive emissions if strongly ordered, $Q_{1}^{2} \gg Q_{2}^{2} \gg Q_{3}^{2} \ldots$ (\approx time-ordered).
To cover "all" of phase space use DGLAP in whole region $Q_{1}^{2}>Q_{2}^{2}>Q_{3}^{2} \ldots$

Iteration gives final-state parton showers:

Need soft/collinear cuts to stay away from nonperturbative physics. Details model-dependent, but around 1 GeV scale.

Planar QCD

With $N_{C}=3$ you need to reuse colours, but not if $N_{C} \rightarrow \infty$:

Colour lines crossed between \mathcal{M} and \mathcal{M}^{\dagger} scale like $1 / N_{C}^{2}$ in $|\mathcal{M}|^{2}$, so vanish for $N_{C} \rightarrow \infty \Rightarrow$ planar QCD. Thus

$$
\sigma=\sigma_{\mathrm{LC}}+\frac{1}{N_{C}^{2}} \sigma_{\mathrm{NLC}}+\frac{1}{N_{C}^{4}} \sigma_{\mathrm{NNLC}}+\cdots
$$

Also showers and hadronization become simpler in this limit. Still use correct $N_{c}=3$ for exact calculations, but $N_{C} \rightarrow \infty$ for colour connections in hard process and shower history.

The Sudakov form factor - 1
Time evolution, conservation of total probability: $\mathcal{P}($ no emission $)=1-\mathcal{P}($ emission $)$.
Multiplicativeness, with $T_{i}=(i / n) T, 0 \leq i \leq n$:

$$
\begin{aligned}
\mathcal{P}_{\mathrm{no}}(0 \leq t<T) & =\lim _{n \rightarrow \infty} \prod_{i=0} \mathcal{P}_{\mathrm{no}}\left(T_{i} \leq t<T_{i+1}\right) \\
& =\lim _{n \rightarrow \infty} \prod_{i=0}^{n-1}\left(1-\mathcal{P}_{\mathrm{em}}\left(T_{i} \leq t<T_{i+1}\right)\right) \\
& =\exp \left(-\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\mathrm{em}}\left(T_{i} \leq t<T_{i+1}\right)\right) \\
& =\exp \left(-\int_{0}^{T} \frac{\mathrm{~d} \mathcal{P}_{\mathrm{em}}(t)}{\mathrm{d} t} \mathrm{~d} t\right) \\
\Longrightarrow \mathrm{d} \mathcal{P}_{\text {first }}(T) & =\mathrm{d} \mathcal{P}_{\mathrm{em}}(T) \exp \left(-\int_{0}^{T} \frac{\mathrm{~d} \mathcal{P}_{\mathrm{em}}(t)}{\mathrm{d} t} \mathrm{~d} t\right)
\end{aligned}
$$

cf. radioactive decay in lecture 1 .

The Sudakov form factor - 2

Expanded, with $Q \sim 1 / t$ (Heisenberg)

$$
\begin{aligned}
\mathrm{d} \mathcal{P}_{a \rightarrow b c} & =\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \\
& \times \exp \left(-\sum_{b, c} \int_{Q^{2}}^{Q_{\max }^{2}} \frac{\mathrm{~d} Q^{\prime 2}}{Q^{\prime 2}} \int \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}\left(z^{\prime}\right) \mathrm{d} z^{\prime}\right)
\end{aligned}
$$

where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so

Note that $\sum_{b, c} \iint \mathrm{~d} \mathcal{P}_{a \rightarrow b c} \equiv 1 \Rightarrow$ convenient for Monte Carlo ($\equiv 1$ if extended over whole phase space, else possibly nothing happens before you reach $Q_{0} \approx 1 \mathrm{GeV}$).

The Sudakov form factor - 3

Sudakov regulates singularity for first emission...

... but in limit of repeated soft emissions $\mathrm{q} \rightarrow \mathrm{qg}$ (but no $\mathrm{g} \rightarrow \mathrm{gg}$) one obtains the same inclusive Q emission spectrum as for ME,
i.e. divergent ME spectrum
\Longleftrightarrow infinite number of PS emissions

More complicated in reality:

- energy-momentum conservation effects big since α_{s} big, so hard emissions frequent
- $\mathrm{g} \rightarrow \mathrm{gg}$ branchings leads to accelerated multiplication of partons

The ordering variable

In the evolution with

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z
$$

Q^{2} orders the emissions (memory).
If $Q^{2}=m^{2}$ is one possible evolution variable then $Q^{\prime 2}=f(z) Q^{2}$ is also allowed, since

$$
\begin{aligned}
& \left|\frac{\mathrm{d}\left(Q^{\prime 2}, z\right)}{\mathrm{d}\left(Q^{2}, z\right)}\right|=\left|\begin{array}{cc}
\frac{\partial Q^{\prime 2}}{\partial Q^{2}} & \frac{\partial Q^{\prime 2}}{\partial z} \\
\frac{\partial z}{\partial Q^{2}} & \frac{\partial z}{\partial z}
\end{array}\right|=\left|\begin{array}{cc}
f(z) & f^{\prime}(z) Q^{2} \\
0 & 1
\end{array}\right|=f(z) \\
\Rightarrow & \mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{f(z) \mathrm{d} Q^{2}}{f(z) Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{\prime 2}}{Q^{\prime 2}} P_{a \rightarrow b c}(z) \mathrm{d} z
\end{aligned}
$$

- $Q^{\prime 2}=E_{a}^{2} \theta_{a \rightarrow b c}^{2} \approx m^{2} /(z(1-z))$; angular-ordered shower
- $Q^{\prime 2}=p_{\perp}^{2} \approx m^{2} z(1-z)$; transverse-momentum-ordered

Coherence

QED: Chudakov effect (mid-fifties)

emulsion plate
reduced ionization
normal ionization

Coherence

QED: Chudakov effect (mid-fifties)

emulsion plate
reduced
ionization
normal ionization

QCD: colour coherence for soft gluon emission

solved by - requiring emission angles to be decreasing
or - requiring transverse momenta to be decreasing

Ordering variables in the LEP/Tevatron era

PYTHIA: $Q^{2}=m^{2} \quad$ HERWIG: $Q^{2} \sim E^{2} \theta^{2}$

large mass first
\Rightarrow "hardness" ordered coherence brute force
covers phase space ME merging simple $\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ simple
not Lorentz invariant
no stop/restart
ISR: $m^{2} \rightarrow-m^{2}$

large angle first \Rightarrow hardness not ordered coherence inherent gaps in coverage ME merging messy

$$
\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}} \text { simple }
$$

not Lorentz invariant
no stop/restart ISR: $\theta \rightarrow \theta$

ARIADNE: $Q^{2}=p_{\perp}^{2}$

large p_{\perp} first \Rightarrow "hardness" ordered coherence inherent
covers phase space ME merging simple $\mathrm{g} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ messy Lorentz invariant can stop/restart
ISR: more messy

The HERWIG algorithm

Basic ideas, to which much has been added over the years:
(1) Evolution in $Q_{a}^{2}=E_{a}^{2} \xi_{a}$ with $\xi_{a} \approx 1-\cos \theta_{a}$, i.e.

$$
\mathrm{d} \mathcal{P}_{\mathrm{a} \rightarrow b c}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d}\left(E_{a}^{2} \xi_{a}\right)}{E_{a}^{2} \xi_{a}} P_{\mathrm{a} \rightarrow b c}(z) \mathrm{d} z=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} \xi_{\mathrm{a}}}{\xi_{a}} P_{a \rightarrow b c}(z) \mathrm{d} z
$$

Require ordering of consecutive ξ values, i.e. $\left(\xi_{b}\right)_{\max }<\xi_{a}$ and $\left(\xi_{c}\right)_{\max }<\xi_{a}$.
(2) Reconstruct masses backwards in algorithm $m_{a}^{2}=m_{b}^{2}+m_{c}^{2}+2 E_{b} E_{c} \xi_{a}$
Note: $\xi_{a}=1-\cos \theta_{a}$ only holds for $m_{b}=m_{c}=0$.
(3) Reconstruct complete kinematics of shower (forward again).

+ angular ordering built in from start
- total jet/system mass not known beforehand (\Rightarrow boosts)
- some wide-angle regions never populated, "dead zones"

The dipole shower

Dual description of partonic state: partons connected by dipoles \Leftrightarrow dipoles stretched between partons parton branching \Leftrightarrow dipole splitting

p_{\perp}-ordered dipole emissions \Rightarrow coherence (cf. angular ordering).
$2 \rightarrow 3$ on-shell parton branchings with local (E, \mathbf{p}) conservation.
ARIADNE shower + many more.
Neat representation in Lund plane (hot topic today).

Quark vs. gluon jets

$$
\frac{P_{\mathrm{g} \rightarrow \mathrm{gg}}}{P_{\mathrm{q} \rightarrow \mathrm{qg}}} \approx \frac{N_{c}}{C_{F}}=\frac{3}{4 / 3}=\frac{9}{4} \approx 2
$$

\Rightarrow gluon jets are softer and broader than quark ones
(also helped by hadronization models, lecture 4).

Note transition g jets $\rightarrow \mathrm{q}$ jets for increasing p_{\perp}.

Matrix element for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ g for small θ_{13}

$$
\frac{\mathrm{d} \sigma_{\mathrm{q} \overline{\mathrm{q} g}}}{\sigma_{\mathrm{q} \overline{\mathrm{q}}}} \propto \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)} \approx \frac{\mathrm{d} \omega}{\omega} \frac{\mathrm{~d} \theta_{13}^{2}}{\theta_{13}^{2}}
$$

is modified for heavy quark Q :
$\begin{aligned} \frac{\mathrm{d} \sigma_{\mathrm{q} \overline{\mathrm{q} g}}}{\sigma_{\mathrm{q} \overline{\mathrm{q}}}} & \propto \frac{\mathrm{d} \omega}{\omega} \frac{\mathrm{d} \theta_{13}^{2}}{\theta_{13}^{2}}\left(\frac{\theta_{13}^{2}}{\theta_{13}^{2}+m_{1}^{2} / E_{1}^{2}}\right)^{2} \\ & =\frac{\mathrm{d} \omega}{\omega} \frac{\theta_{13}^{2} \mathrm{~d} \theta_{13}^{2}}{\left(\theta_{13}^{2}+m_{1}^{2} / E_{1}^{2}\right)^{2}}\end{aligned}$
so "dead cone" for $\theta_{13}<m_{1} / E_{1}$$\theta_{13}$
For charm and bottom lagely filled in by their decay products.

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

$f_{i}\left(x, Q^{2}\right)=$ number density of partons i at momentum fraction x and probing scale Q^{2}. Linguistics (example):

$$
F_{2}\left(x, Q^{2}\right)=\sum_{i} e_{i}^{2} x f_{i}\left(x, Q^{2}\right)
$$

structure function parton distributions

PDF example

Several PDF collaborations: CTEQ, MMHT, NNPDF, ... See presentation by Thomas Cridge tomorrow

PDF evolution

Initial conditions at small Q_{0}^{2} unknown: nonperturbative.
Resolution dependence perturbative, by DGLAP:
DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$
\frac{\mathrm{d} f_{b}\left(x, Q^{2}\right)}{\mathrm{d}\left(\ln Q^{2}\right)}=\sum_{a} \int_{x}^{1} \frac{\mathrm{~d} z}{z} f_{a}\left(y, Q^{2}\right) \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}\left(z=\frac{x}{y}\right)
$$

DGLAP already introduced for (final-state) showers:

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z
$$

Same equation, but different context:

- $\mathrm{d} \mathcal{P}_{a \rightarrow b c}$ is probability for the individual parton to branch; while
- $\mathrm{d} f_{b}\left(x, Q^{2}\right)$ describes how the ensemble of partons evolve by the branchings of individual partons as above.

Initial-State Shower Basics

- Parton cascades in p are continuously born and recombined.
- Structure at Q is resolved at a time $t \sim 1 / Q$ before collision.
- A hard scattering at Q^{2} probes fluctuations up to that scale.
- A hard scattering inhibits full recombination of the cascade.

- Convenient reinterpretation:

Forwards vs. backwards evolution

Event generation could be addressed by forwards evolution: pick a complete partonic set at low Q_{0} and evolve, consider collisions at different Q^{2} and pick by σ of those. Inefficient:
(1) have to evolve and check for all potential collisions, but 99.9... \% inert
(2) impossible (or at least very complicated) to steer the production, e.g. of a narrow resonance (Higgs)
Backwards evolution is viable and ~equivalent alternative: start at hard interaction and trace what happened "before"

Monte Carlo approach, based on conditional probability: recast

$$
\frac{\mathrm{d} f_{b}\left(x, Q^{2}\right)}{\mathrm{d} t}=\sum_{a} \int_{x}^{1} \frac{\mathrm{~d} z}{z} f_{a}\left(x^{\prime}, Q^{2}\right) \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

with $t=\ln \left(Q^{2} / \Lambda^{2}\right)$ and $z=x / x^{\prime}$ to

$$
\mathrm{d} \mathcal{P}_{b}=\frac{\mathrm{df}_{b}}{f_{b}}=|\mathrm{d} t| \sum_{a} \int \mathrm{~d} z \frac{x^{\prime} f_{a}\left(x^{\prime}, t\right)}{x f_{b}(x, t)} \frac{\alpha_{\mathrm{s}}}{2 \pi} P_{a \rightarrow b c}(z)
$$

then solve for decreasing t, i.e. backwards in time, starting at high Q^{2} and moving towards lower, with Sudakov form factor $\exp \left(-\int \mathrm{d} \mathcal{P}_{b}\right)$.
Extra factor $x^{\prime} f_{a} / x f_{b}$ relative to final-state equations.

Coherence in spacelike showers

with $\overline{Q^{2}}=-m^{2}=$ spacelike virtuality

- kinematics only:
$Q_{3}^{2}>z_{1} Q_{1}^{2}, Q_{5}^{2}>z_{3} Q_{3}^{2}, \ldots$
i.e. Q_{i}^{2} need not even be ordered
- coherence of leading collinear singularities:

$$
Q_{5}^{2}>Q_{3}^{2}>Q_{1}^{2}, \text { i.e. } Q^{2} \text { ordered }
$$

- coherence of leading soft singularities (more messy):
$E_{3} \theta_{4}>E_{1} \theta_{2}$, i.e. $z_{1} \theta_{4}>\theta_{2}$
$z \ll 1: \quad E_{1} \theta_{2} \approx p_{\perp 2}^{2} \approx Q_{3}^{2}, E_{3} \theta_{4} \approx p_{\perp 4}^{2} \approx Q_{5}^{2}$
i.e. reduces to Q^{2} ordering as above
$z \approx 1: \quad \theta_{4}>\theta_{2}$, i.e. angular ordering of soft gluons
\Longrightarrow reduced phase space

Evolution procedures

DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
evolution towards larger Q^{2} and (implicitly) towards smaller x BFKL: Balitsky-Fadin-Kuraev-Lipatov evolution towards smaller x (with small, unordered Q^{2}) CCFM: Ciafaloni-Catani-Fiorani-Marchesini interpolation of DGLAP and BFKL
GLR: Gribov-Levin-Ryskin
nonlinear equation in dense-packing (saturation) region, where partons recombine, not only branch

Initial- vs. final-state showers

Both controlled by same evolution equations

$$
\mathrm{d} \mathcal{P}_{a \rightarrow b c}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \frac{\mathrm{~d} Q^{2}}{Q^{2}} P_{a \rightarrow b c}(z) \mathrm{d} z \cdot \text { (Sudakov) }
$$

but

Final-state showers:
Q^{2} timelike $\left(\sim m^{2}\right)$

decreasing E, m^{2}, θ
both daughters $m^{2} \geq 0$ physics relatively simple \Rightarrow "minor" variations:
Q^{2}, shower vs. dipole, ...

Initial-state showers:
Q^{2} spacelike $\left(\approx-m^{2}\right)$

decreasing E, increasing Q^{2}, θ
one daughter $m^{2} \geq 0$, one $m^{2}<0$ physics more complicated
\Rightarrow more formalisms:
DGLAP, BFKL, CCFM, GLR, ...

Combining FSR with ISR

Separate processing of ISR and FSR misses interference (\sim colour dipoles)

Combining FSR with ISR

Separate processing of ISR and FSR misses interference (\sim colour dipoles)

ISR+FSR add coherently in regions of colour flow and destructively else
in "normal" shower by azimuthal anisotropies
automatic in dipole (by proper boosts)

Next-to-leading log showers

$$
\mathrm{d} \mathcal{P}_{\mathrm{g}}=\operatorname{dn}_{\mathrm{g}} \approx \frac{8 \alpha_{\mathrm{s}}}{3 \pi} \frac{\mathrm{~d} \theta}{\theta} \frac{\mathrm{~d} \omega}{\omega} \mapsto \alpha_{\mathrm{s}} \mathrm{~L}^{2}
$$

gives leading-log answer $P_{n} \propto\left(\alpha_{s} L^{2}\right)^{n}=\alpha_{s}^{n} L^{2 n}$.
Resummation/exponentiation gives Sudakov $P_{0} \propto \exp \left(-\alpha_{\mathrm{s}} \mathrm{L}^{2}\right)$.
(Transverse momentum cuts both θ and $\omega \Rightarrow \alpha_{s}^{n} L^{n}$.)
More careful handling of kinematics, α_{s} running, splitting kernels (also $\mathrm{g} \rightarrow \mathrm{ggg}$), etc., give subleading corrections $\propto \alpha_{\mathrm{s}}^{n} L^{2 n-1}$.
All showers have some elements of NLL, e.g. momentum conservation, but some dedicated ongoing projects:

- Deductor (Nagy, Soper)
- PanScales (Salam et al.)
- Herwig 7 (Plätzer et al.)
- Vincia (Skands et al.)
- Alaric (Krauss et al.)

Matrix elements vs. parton showers

ME : Matrix Elements

+ systematic expansion in α_{s} ('exact')
+ powerful for multiparton Born level
$+\quad$ flexible phase space cuts
- loop calculations very tough
- negative cross section in collinear regions \Rightarrow unpredictive jet/event structure
- no easy match to hadronization
$\frac{\mathrm{d} \sigma}{\mathrm{d} p_{\perp}^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} \theta^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} m^{2}}$

$\frac{\mathrm{d} \sigma}{\mathrm{d} p_{\perp}^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} \theta^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} m^{2}}$

Matrix elements and parton showers

Recall complementary strengths:

- ME's good for well separated jets
- PS's good for structure inside jets

Marriage desirable! But how?
Problems: - gaps in coverage?

- doublecounting of radiation?
- Sudakov?
- NLO (+NLL) consistency?

First attempt 40 years ago - Matrix Element Corrections.
Key topic of event generator development in last 30 years, with impressive progress.

See presentations by Matthew Alexander Lim on Thursday and Friday.

Matrix Element Corrections (MEC)

$=$ cover full phase space with smooth transition ME/PS.
Want to reproduce $\quad W^{\mathrm{ME}}=\frac{1}{\sigma(\mathrm{LO})} \frac{\mathrm{d} \sigma(\mathrm{LO}+\mathrm{g})}{\mathrm{d}(\text { phasespace })}$
by shower generation with $W^{\mathrm{PS}}>W^{\mathrm{ME}}+$ correction procedure

- Exponentiate ME correction by shower Sudakov form factor:

$$
W_{\text {actual }}^{\mathrm{PS}}\left(Q^{2}\right)=W^{\mathrm{ME}}\left(Q^{2}\right) \exp \left(-\int_{Q^{2}}^{Q_{\max }^{2}} W^{\mathrm{ME}}\left(Q^{\prime 2}\right) \mathrm{d} Q^{\prime 2}\right)
$$

- Memory of shower remains in Q^{2} choice, i.e. "time" ordering.
- ME regularized: probability ≤ 1 instead of divergent.
- NLO correction simple for FSR, more messy for ISR: replace $\sigma(\mathrm{LO}) \rightarrow \sigma(\mathrm{NLO})$ in prefactor (POWHEG).

Event and jet characterization

Key difference between $\mathrm{e}^{+} \mathrm{e}^{-}$and pp :

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$ is rotationally symmetric on unit sphere.
- pp has "irrelevant" beam remnants along collision axis, requiring "true jets" to stick out in p_{\perp}.

Brief history:

- Spear (SLAC): find event axis in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}} \Rightarrow$ Sphericity.
- Fixed-target pp experiments collision alignment \Rightarrow Thrust.
- PETRA (DESY): early 80 'ies, $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$, establish g .

1) S, T; extend Sphericity and Thrust families to 3 axes.
2) clustering algorithms, e.g. JADE, Durham k_{\perp}.

- $\mathrm{Sp} \overline{\mathrm{p}} \mathrm{S}$ (CERN): cone jets in (η, φ) space, e.g. UA1.
- Tevatron (Fermilab): cone algorithms, increasingly messy.
- LHC: return of clustering with new safer and faster algorithms. Anti- k_{\perp} "is" infrared safe return to UA1 cone algorithm.

Two- and three-jet events in $\mathrm{e}^{+} \mathrm{e}^{-}$

Sphericity

View as eigenvector problem, e.g. rotation axes of irregular 3D body. Here spanned up by the \mathbf{p}_{i} of "all" particles in event.

$$
S^{a b}=\frac{\sum_{i} p_{i}^{a} p_{i}^{b}}{\sum_{i} p_{i}^{2}} a, b=x, y, z
$$

$S^{a b}$ has three eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$ with $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$.
Sphericity $S=\frac{3}{2}\left(\lambda_{2}+\lambda_{3}\right), 0 \leq S \leq 1$.
$S=0$: two back-to-back pencil jets, e.g. $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$.
$S=1$: spherically symmetric distribution.
Aplanarity $A=\frac{3}{2} \lambda_{3}, 0 \leq A \leq \frac{1}{2}$.
$A=0$: all particles in one plane.
$A=1 / 2$: like $S=1$.
Problem: collinear unsafe!
E.g. different answer if $\pi^{0} \rightarrow \gamma \gamma$ counted as one or two particles.

Linearized Sphericity

Collinear safe alternative, used in same way but with

$$
L^{a b}=\frac{\sum_{i} \frac{p_{i}^{a} p_{i}^{b}}{\left|\mathbf{p}_{i}\right|}}{\sum_{i}\left|\mathbf{p}_{i}\right|} a, b=x, y, z
$$

No proper name: some confusion!
Additional measures:
$C=3\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right)$
$D=27 \lambda_{1} \lambda_{2} \lambda_{3}$
used to characterize 3- and 4-jet topologies, respectively.
(Linearized) Sphericity family not normally used in pp, since beam jets dominate structure.
Solution: set all $p_{i}^{z}=0$ so only transverse structure studied. Modified " 2 D " $S=2 \lambda_{2}$ and no A.

Thrust is computationally more demanding optimization

$$
T=\max _{|\mathbf{n}|=1} \frac{\sum_{i}\left|\mathbf{p}_{i} \mathbf{n}\right|}{\sum_{i}\left|\mathbf{p}_{i}\right|}
$$

with \mathbf{n} for maximum is called Thrust axis.
$1 / 2<T<1$, with $T=1$ for two back-to-back pencil jets and $T=1 / 2$ for a spherically symmetric distribution.

$$
\begin{aligned}
\text { Major } & =\max _{\left|\mathbf{n}^{\prime}\right|=1, \mathbf{n}^{\prime} \mathbf{n}=0} \frac{\sum_{i}\left|\mathbf{p}_{i} \mathbf{n}^{\prime}\right|}{\sum_{i}\left|\mathbf{p}_{i}\right|} \\
\text { Minor } & =\frac{\sum_{i}\left|\mathbf{p}_{i} \mathbf{n}^{\prime \prime}\right|}{\sum_{i}\left|\mathbf{p}_{i}\right|} \text { with } \mathbf{n}^{\prime \prime} \mathbf{n}=\mathbf{n}^{\prime \prime} \mathbf{n}^{\prime}=0 \\
\text { Oblateness } & =\text { Major }- \text { Minor }
\end{aligned}
$$

Major and Oblateness again useful for 3-jet structure, Minor for 4-jet one.

2D Sphericity at the LHC

Competition between more $\sum p_{\perp}$ by more particles or by jets?

Clustering algorithms - basics

Most clustering algorithms are based on sequential recombination:

- Define a distance measure $d_{i j}$ between to objects i and j, partons or particles, where $d_{i j}=0$ is closest possible.
- Define a procedure whereby any objects i and j can be joined into a new object k, e.g. $p_{k}=p_{i}+p_{j}$.
- Define a stopping criterion, e.g. that all $d_{i j}>d_{\text {min }}$ or that only $n_{\text {min }}$ objects remain.
- Start out with a list of n objects.
- Calculate all $d_{i j}$ and find pair $i_{\text {min }}$ and $j_{\text {min }}$ with smallest value.
- Remove $i_{\min }$ and $j_{\text {min }}$ from list and insert joined object k.
- Iterate last two steps until the stopping criterion is met.
- Jets $=$ the objects that now remain.
$2 \rightarrow 1$ joining can be viewed as undoing $1 \rightarrow 2$ parton branchings. Less obvious interpretation of hadronization step.

Clustering algorithms in $\mathrm{e}^{+} \mathrm{e}^{-}$

Naive thought $d_{i j}=m_{i j}^{2}$, but allows clustering of opposite objects. JADE is almost like invariant mass:

$$
d_{i j}=\frac{2 E_{i} E_{j}\left(1-\cos \theta_{i j}\right)}{E_{\mathrm{vis}}^{2}}
$$

where $E_{\mathrm{vis}} \approx E_{\mathrm{CM}}$ is visible energy.
Durham offers a theoretically preferred alternative

$$
d_{i j}=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)}{E_{\mathrm{CM}}^{2}}
$$

which can be viewed as the (scaled) p_{\perp}^{2} of the softer object with respect to the harder one:
$2(1-\cos \theta) \approx \sin ^{2} \theta$ for small θ and $p_{\perp}=p \sin \theta$.
Undoes p_{\perp}-ordered branchings (to some approximation).

Clustering algorithm ambiguities

Interpretation is in the eye of the beholder:

How many jets?
Which are quarks and which gluons?

Clustering algorithm results

Most LEP QCD physics based on jet finding, e.g.:

Clustering conditions in hadron collisions

Most particles are at small p_{\perp}, say below 1 GeV , and at small angles with respect to beam axis, outside central tracking region.

Cylindrical symmetry and rapidity

Cylindrical coordinates:

$$
\begin{aligned}
\frac{\mathrm{d}^{3} p}{E} & =\frac{\mathrm{d} p_{x} \mathrm{~d} p_{y} \mathrm{~d} p_{z}}{E}=\frac{\mathrm{d}^{2} p_{\perp} \mathrm{d} p_{z}}{E}=\mathrm{d}^{2} p_{\perp} \mathrm{d} y \\
& =p_{\perp} \mathrm{d} p_{\perp} \mathrm{d} \varphi \mathrm{~d} y=\frac{1}{2} \mathrm{~d} p_{\perp}^{2} \mathrm{~d} \varphi \mathrm{~d} y
\end{aligned}
$$

with rapidity y given by

$$
\begin{aligned}
y & =\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}=\frac{1}{2} \ln \frac{\left(E+p_{z}\right)^{2}}{\left(E+p_{z}\right)\left(E-p_{z}\right)}=\frac{1}{2} \ln \frac{\left(E+p_{z}\right)^{2}}{m^{2}+p_{\perp}^{2}} \\
& =\ln \frac{E+p_{z}}{m_{\perp}}=\ln \frac{m_{\perp}}{E-p_{z}}
\end{aligned}
$$

Exercise: show that $\mathrm{dp}_{z} / E=\mathrm{d} y$ by showing that $\mathrm{d} y / \mathrm{d} p_{z}=1 / E$.
Hint: use that $E=\sqrt{m_{\perp}^{2}+p_{z}^{2}}$.

Lightcone kinematics and boosts

Introduce (lightcone) $p^{+}=E+p_{z}$ and $p^{-}=E-p_{z}$.
Note that $p^{+} p^{-}=E^{2}-p_{z}^{2}=m_{\perp}^{2}$.
Consider boost along z axis with velocity β and $\gamma=1 / \sqrt{1-\beta^{2}}$

$$
\begin{gathered}
\left\{\begin{array} { c }
{ p _ { z } ^ { \prime } = \gamma (p _ { z } + \beta E) } \\
{ E ^ { \prime } = \gamma (E + \beta p _ { z }) }
\end{array} \Rightarrow \left\{\begin{array}{c}
p^{\prime+}=k p^{+} \\
p^{\prime-}=p^{-} / k
\end{array} \quad \text { with } k=\sqrt{\frac{1+\beta}{1-\beta}}\right.\right. \\
y^{\prime}=\frac{1}{2} \ln \frac{p^{\prime+}}{p^{\prime-}}=\frac{1}{2} \ln \frac{k p^{+}}{p^{-} / k}=y+\ln k \\
y_{2}^{\prime}-y_{1}^{\prime}=\left(y_{2}+\ln k\right)-\left(y_{1}+\ln k\right)=y_{2}-y_{1}
\end{gathered}
$$

Note how integration of cross section nicely separates into rapidity:
$\sigma^{A B}=\sum_{i, j} \iint \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{i}^{(A)}\left(x_{1}, Q^{2}\right) f_{j}^{(B)}\left(x_{2}, Q^{2}\right) \int \mathrm{d} \hat{\sigma}_{i j}\left(\hat{s}=x_{1} x_{2} s\right)$
$\iint \mathrm{d} x_{1} \mathrm{~d} x_{2}=\iint \mathrm{d} \tau \mathrm{d} y$ with $\tau=x_{1} x_{2}$ and $y=\frac{1}{2} \ln \frac{x_{1}}{x_{2}}$

Pseudorapidity

If experimentalists cannot measure m they may assume $m=0$. Instead of rapidity y they then measure pseudorapidity η :

$$
y=\frac{1}{2} \ln \frac{\sqrt{m^{2}+\mathbf{p}^{2}}+p_{z}}{\sqrt{m^{2}+\mathbf{p}^{2}}-p_{z}} \Rightarrow \eta=\frac{1}{2} \ln \frac{|\mathbf{p}|+p_{z}}{|\mathbf{p}|-p_{z}}=\ln \frac{|\mathbf{p}|+p_{z}}{p_{\perp}}
$$

or

$$
\begin{aligned}
\eta & =\frac{1}{2} \ln \frac{|\mathbf{p}+|\mathbf{p}| \cos \theta}{|\mathbf{p}|-|\mathbf{p}| \cos \theta}=\frac{1}{2} \ln \frac{1+\cos \theta}{1-\cos \theta} \\
& =\frac{1}{2} \ln \frac{2 \cos ^{2} \theta / 2}{2 \sin ^{2} \theta / 2}=\ln \frac{\cos \theta / 2}{\sin \theta / 2}=-\ln \tan \frac{\theta}{2}
\end{aligned}
$$

which thus only depends on polar angle.
η is not simple under boosts: $\eta_{2}^{\prime}-\eta_{1}^{\prime} \neq \eta_{2}-\eta_{1}$.
You may even flip sign!

The pseudorapidity dip

By analogy with $\mathrm{d} y / \mathrm{d} p_{z}=1 / E$ it follows that $\mathrm{d} \eta / \mathrm{d} p_{z}=1 /|\mathbf{p}|$.

Thus

$$
\frac{\mathrm{d} \eta}{\mathrm{~d} y}=\frac{\mathrm{d} \eta / \mathrm{d} p_{z}}{\mathrm{~d} y / \mathrm{d} p_{z}}=\frac{E}{|\mathbf{p}|}>1
$$

with limits

$$
\begin{aligned}
& \frac{\mathrm{d} \eta}{\mathrm{~d} y} \rightarrow \frac{m_{\perp}}{p_{\perp}} \text { for } p_{z} \rightarrow 0 \\
& \frac{\mathrm{~d} \eta}{\mathrm{~d} y} \rightarrow 1 \text { for } p_{z} \rightarrow \pm \infty
\end{aligned}
$$

so if $\mathrm{d} n / \mathrm{d} y$ is flat for $y \approx 0$ then $\mathrm{d} n / \mathrm{d} \eta$ has a dip there.

Massless four-vectors can be written in cylindrical coordinates like

$$
p=p_{\perp}(\cosh y ; \cos \varphi, \sin \varphi, \sinh y)
$$

The invariant mass of two massless four-vectors is

$$
\begin{aligned}
m_{i j}^{2} & =\left(p_{i}+p_{j}\right)^{2}=2 p_{i} p_{j} \\
& =2 p_{\perp i} p_{\perp j}\left(\cosh \left(y_{i}-y_{j}\right)-\cos \left(\varphi_{i}-\varphi_{j}\right)\right) \\
& \approx 2 p_{\perp i} p_{\perp j}\left(1+\frac{1}{2}\left(y_{i}-y_{j}\right)^{2}-\left(1-\frac{1}{2}\left(\varphi_{i}-\varphi_{j}\right)^{2}\right)\right) \\
& =p_{\perp i} p_{\perp j}\left(\Delta y_{i j}^{2}+\Delta \varphi_{i j}^{2}\right)=p_{\perp i} p_{\perp j} R_{i j}^{2}
\end{aligned}
$$

so a circle in the (y, φ) plane is a meaningful concept.

- Each original particle defines a cluster, with well-defined four-momentum $\Rightarrow\left(p_{\perp}, y, \varphi\right)$.
- Define distance measures of all clusters i to the beam and of all cluster pairs (i, j) relative to each other

$$
\begin{aligned}
d_{i B} & =p_{\perp i}^{2} \\
d_{i j} & =\min \left(p_{\perp i}^{2}, p_{\perp j}^{2}\right) \frac{R_{i j}^{2}}{R^{2}}
\end{aligned}
$$

- Find the smallest of all $d_{i B}$ and $d_{i j}$.
a) If a $d_{i B}$ and $p_{\perp i}<p_{\perp \text { min }}$ then throw it.
b) Else if a $d_{i B}$ then call i a jet and remove it from cluster list.
c) Else if a $d_{i j}$ then combine i and j to a new cluster with four-momentum $p_{i}+p_{j}$.
- Repeat until no clusters remain.

Two key parameters R and $p_{\perp \text { min }}$, where $p_{\perp \text { min }}=0$ is allowed simplification.

The k_{\perp} family

Generalize the $d_{i B}$ and $d_{i j}$ measures to

$$
\begin{aligned}
d_{i B} & =p_{\perp i}^{2 p} \\
d_{i j} & =\min \left(p_{\perp i}^{2 p}, p_{\perp j}^{2 p}\right) \frac{R_{i j}^{2}}{R^{2}}
\end{aligned}
$$

- $p=1$ is k_{\perp} algorithm; preferentially clusters soft particles.
- $p=0$ is Cambridge-Aachen or no- k_{\perp} algorithm.
- $p=-1$ is anti- k_{\perp} algorithm; preferentially clusters around hardest particle and give round jet catchment areas.
All three are infrared and collinear safe; i.e. the addition of a soft particle, or the splitting of a particle into two collinear ones, do not alter the outcome.

These, and many more jet algorithms, are available in the FASTJET package. (Faster than naive step-by-step clustering.)

Clustering results

