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Multijets — the need for Higher Orders

SATLAS

J‘* EXPERIMENT =

Run Number: 152409, Event Number: 8186656
Date: 2010-04-05 12:28:45 CEST

6 Jet Event in 7 TeV Collisions

An event with 6 jets taken on April 4th, 2010. The jets have calibrated transverse momenta
between 30 GeV and 70 GeV and are well separated in the detector. 12

2 — 6 process or 2 — 2 dressed up by bremsstrahlung!?
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Perturbative QCD

Perturbative calculations = Matrix Elements.

Improved calculational techniques allows

* more legs (= final-state partons)

* more loops (= virtual partons not visible in final state)
but with limitations, especially for loops.

Parton Showers:

approximations to matrix element behaviour,

most relevant for multiple emissions at low energies and/or angles.
Main topic of this lecture.

Matching and Merging:

methods to combine matrix elements (at high scales)
with parton showers (at low scales),

with a consistent and smooth transition.

Huge field at LHC.
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In the beginning: Electrodynamics

An electrical charge, say an electron,
is surrounded by a field:
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this field can be expressed in terms of
an equivalent flux of photons:

20em dO dw

dn, ~
v T 0 w

Equivalent Photon Approximation,
or method of virtual quanta (e.g. Jackson)
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In the beginning: Electrodynamics

An electrical charge, say an electron,
is surrounded by a field:

For a rapidly moving charge

this field can be expressed in terms of
an equivalent flux of photons:

20em dO dw

dn, ~
v T 0 w

Equivalent Photon Approximation,
or method of virtual quanta (e.g. Jackson)
(Bohr; Fermi; Weiszacker, Williams ~1934)

0: collinear divergence, saved by m, > 0 in full expression.

w: true divergence, ny x [ dw/w = oo, but E, « [wdw/w finite.

These are virtual photons: continuously emitted and reabsorbed.




In the beginning: Bremsstrahlung

When an electron is kicked into a new direction,
the field does not have time fully to react: W
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@ Initial State Radiation (ISR):
part of it continues ~ in original direction of e
e Final State Radiation (FSR):
the field needs to be regenerated around outgoing e,
and transients are emitted ~ around outgoing e direction

Emission rate provided by equivalent photon flux in both cases.
Approximate cutoffs related to timescale of process:
the more violent the hard collision, the more radiation!




In the beginning: Exponentiation

Assume ) E, < E, such that energy-momentum conservation is
not an issue. Then
20em db dw

T 0 w
is the probability to find a photon at w and 6,
irrespectively of which other photons are present.

dP, = dn, =

Uncorrelated = Poissonian number distribution:

Pl' = <nj}|/>l e_<n"/>
1!

with
Omax Wmax 2aem Hmax Wmax
(ny) = dn, ~ In In
emin Wmin ™ emin Wmin
Note that [ dP, = [dn, > 1 is not a problem:
proper interpretation is that many photons are emitted.

Exponentiation: reinterpretation of dP, into Poissonian.




So how is QCD the same?

@ A quark is surrounded by a gluon field

8as df dw

dPy = dng =~ 0

i.e. only differ by substitution e, — 4ay/3.

@ An accelerated quark emits gluons
with collinear and soft divergences
and as Initial and Final State Radiation.

%

e Typically (ng) = [ dng > 1 since as > qem
= even more pressing need for exponentiation.




So how is QCD different?

0.5
Q)

0.4

@ QCD is non-Abelian, so a gluon
is charged and is surrounded
by its own field:
emission rate 4a5/3 — 3as,
field structure more complicated,
interference effects more important.

o as(Q?) diverges for Q% — AéCD. Rl
with Aqcp ~ 0.2GeV = 1fm™ 1. Py

e Confinement: gluons below Aqcp 1
not resolved = de facto cutoffs.

260 MeV === 0,122
3{:}) { 220 MeV — 0.119
= L 185 MeV — - 0116

0.3

0.2

100

' QIGev)

Unclear separation between
“accelerated charge” and “emitted radiation”:
many possible Feynman graphs = histories.
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The Parton-Shower Approach

2—n = (2—2) & ISR & FSR
q Q3 Q

‘‘‘‘‘

a Q3 Q

ISR 2—-2 FSR

FSR = Final-State Radiation = timelike shower
Q,? ~ m? > 0 decreasing

ISR = Initial-State Radiation = spacelike showers
Q,? ~—m?>0 increasing
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Why “time” like and “space” like?

Consider four-momentum conservation in a branching a — bc¢

Pa=0 = PpPic=-Pib
p+ =E+pL = pra=piptpic o
-=E—-p. = pa=pbtprc c

Define p1p =z pia, pirc=(1-2)pia
Use pyp_ = E> — pf = m* + p3

2 2 2 2 2 2
my+pPl, M,+pPly | Mct+Pic

P+a Z P4a (1 - Z) P+a
L oo mptpl  metpl _mp o ome Pl
2 z 1-2z z 1-z z(1-2)

2
Final-state shower: m, = m. =0 = mg = 2(1 z) > 0 = timelike

Initial-state shower: m; = m. =0 = mi = —1+ < 0= spacelike
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Doublecounting

A 2 — n graph can be “simplified” to 2 — 2 in different ways:

E:fgmm:

g—qaqgeaqg — qg g — g9 & gg — aq
or deform : to E
VOO ———————
FSR ISR

Do not doublecount: 2 — 2 = most virtual = shortest distance
(detailed handling of borders = match & merge)
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Final-state radiation

Standard process by two Feynman diagrams:

2 (q) 2(a) OF,
i Xj =
Ecm
0 0 3(g)
p 3(9) X1+Xxo+x3 =2
1(q) 1(a)
doyg XT3

% Xm dX2

Qs
op 27

(1—x1)(1—x2)




Final-state radiation

Standard process by two Feynman diagrams:

2 (@) 2 (@) oF
i Xj =
p 3(9) X1+Xxo+x3 =2
1(a) 1(a)
dome _ as 4 XP+x5 s @
oo 2r 3 (Toxq)(1xp) X2

Convenient (but arbitrary) subdivision to “split” radiation:

1 (1*X1)+(1*X2)_ 1 1

1 —a)1—) X3 B (2




From matrix elements to parton showers

Rewrite for x, — 1, i.e. g—g collinear limit:

2 2 2
m Q d@
l-xo=-"2=""=Sdo=—-
Eén  Edn Eén
define z as fraction q retains g
in branching q — qg
a
X1 ~ z = dxg=dz
x3 ~ 1—z a
:dP:dj:% dxz ﬂX22+X12 Xlz%—szﬂl+22
o0 27 (1—x2) 3(1—x1) 2 Q2 31—z

In limit x; — 1 same result, but for @ — qg.

dQ?/Q? = dm?/m?: “mass (or collinear) singularity”

dz/(1 — z) = dw/w “soft singularity”




The DGLAP equations

Generalizes to

DGLAP (Dokshitzer—Gribov—-Lipatov—Altarelli-Parisi)

as dQ?

d73a—>bc % Q2 Pa—>bc(z) dz
41+ 22
Favss = 37

. (1—-2z(1-2))?
Poves = 3 z(1-2z)

Pyygg = % (22 + (1 —2)?) (nf = no. of quark flavours)

Universality: any matrix element reduces to DGLAP in collinear limit.

do(H® — qqg)  do(Z° — qqg)

.g. — . 1I; limit
©8 do‘(HO —>q?1) da(ZO —>qq) in collinear limi
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The iterative structure

Generalizes to many consecutive emissions if strongly ordered,
Q? > Q3> Q... (= time-ordered).

To cover “all” of phase space use DGLAP in whole region
Q> Q3> Q3%....

Iteration gives
final-state
parton showers:

Need soft/collinear cuts to stay away from nonperturbative physics.
Details model-dependent, but around 1 GeV scale.
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Planar QCD

With N¢ = 3 you need to reuse colours, but not if N¢ — oo:

mo (m = magenta)

J» cm (c = cyan)

G00TGGG < ( )

Colour lines crossed between M and M scale like 1/NZ in | M|?,
so vanish for N¢ — oo = planar QCD. Thus
1 1
o=o0 —0 + 0 e
LC + N2 NLC NE NNLC +
Also showers and hadronization become simpler in this limit.

Still use correct N. = 3 for exact calculations, but N¢ — oo
for colour connections in hard process and shower history.
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The Sudakov form factor — 1

Time evolution, conservation of total probability:
P(no emission) = 1 — P(emission).

Multiplicativeness, with T; = (i/m)T, 0 <i < n:

Po(0<t<T) =

— dPﬁrSt(T) =

n—1
lim_ H)PHO(T,- <t < Tip)
1=
n—1
Jim [T (1= Pen(Ti < £ < Tisa))
i=0
n—1
exp ( nli)rgozpem(—ri <t< Ti+l)>
i=0

e ([ Pl

dPem(T) exp <— /OT szn;(t)dt>

cf. radioactive decay in lecture 1.




The Sudakov form factor — 2

Expanded, with Q ~ 1/t (Heisenberg)

o dQ°
2 Q2

Qhax dQ? [ «
X exp —2/2 (?/2/‘2;Pa*>bc(zl)dzl
b,c Q

where the exponent is (one definition of) the Sudakov form factor

dPasbe = a—bc (Z) dz

A given parton can only branch once, i.e. if it did not already do so

Note that -, . [ [ dPapc =1 = convenient for Monte Carlo

(= 1 if extended over whole phase space, else possibly nothing
happens before you reach Qy ~ 1 GeV).




The Sudakov form factor — 3

Sudakov regulates singularity for first emission ...

dP/dQ ... but in limit of repeated soft
emissions q — qg (but no g — gg)
ME one obtains the same inclusive
Q@ emission spectrum as for ME,
i.e. divergent ME spectrum
N < infinite number of PS emissions
PS

Q

More complicated in reality:

@ energy-momentum conservation effects big since oy big,
so hard emissions frequent

@ g — gg branchings leads to accelerated multiplication
of partons
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The ordering variable

In the evolution with

Q? orders the emissions (memory).

If Q% = m? is one possible evolution variable
then Q"2 = f(z)Q? is also allowed, since

d(QQ,Z) _ (?9%/22 8an/2 _ f(z) f/(Z)Q2 _ f(z)
d(Q? 2) Dz, o2 0 1
as f(z)dQ@? as dQ?
= dPassbe = Z f((z))QZ Paﬁbc(z) dz = g W Paabc(z) dz

o Q% =E2?0? ., =~ m?/(z(1— z)); angular-ordered shower

o Q2 =p? ~ m?z(1 — z); transverse-momentum-ordered




Coherence

QED: Chudakov effect (mid-fifties)

— ot
UVAVAVAVAVAVAVAVAV,Y _
cosmicray v atom €

reduced normal

emulsion plate it A
ionization ionization

Torbjérn
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Coherence

QED: Chudakov effect (mid-fifties)

— ot
AVAVAVAVAVAVAVAVAVAY _
cosmicray v atom €
emulsion plate reduced _normal
ionization ionization

QCD: colour coherence for soft gluon emission

solved by e requiring emission angles to be decreasing
or e requiring transverse momenta to be decreasing

Torbjorn strand Introduction to Event Generators 2



Ordering variables in the LEP/Tevatron era

PYTHIA: Q2 = m?

Pl

AN

HERWIG: Q2 ~ E292

Pl

A

large mass first
= “hardness” ordered
coherence brute
force
covers phase space
ME merging simple
g — qq simple
not Lorentz invariant
no stop/restart

ISR: m2 — —m?2

L L
large angle first
= hardness not
ordered
coherence inherent
gaps in coverage
ME merging messy
g — qq simple
not Lorentz invariant
no stop/restart
ISR: 6 — 0

ARIADNE: Q2 = p2

large p | first
= “hardness” ordered
coherence inherent

covers phase space

ME merging simple
g — qq messy
Lorentz invariant
can stop/restart

ISR: more messy




The HERWIG algorithm

Basic ideas, to which much has been added over the years:
© Evolution in Q2 = E2¢, with £, ~ 1 — cosf,, i.e.

< d(E2
dpa—>bc = af ( afa) Pa—)bC(z) dz =

as d,
2 E2¢,

o g Pa_>bC(Z) dZ

Require ordering of consecutive & values, i.e. ({p)max < &2 and
(gc)max < §a-

@ Reconstruct masses backwards in algorithm
m2 = mi + m?2 + 2ELE ¢,

Note: £&; =1 — cos @, only holds for m, = m. = 0.

© Reconstruct complete kinematics of shower (forward again).

+ angular ordering built in from start
— total jet/system mass not known beforehand (= boosts)
— some wide-angle regions never populated, “dead zones"




The dipole shower

Dual description of partonic state:

partons connected by dipoles < dipoles stretched between partons
parton branching < dipole splitting

@%@/@\

& = In(k? /A?)
p.-ordered dipole emissions = L=1n(s/A?)
coherence (cf. angular ordering).

2 — 3 on-shell parton branchings

with local (E, p) conservation.
ARIADNE shower + many more.

Neat representation in Lund plane
(hot topic today).




Quark vs. gluon jets

Psge  Nec 3 9

PqﬁquciF:r/:)’:“N

= gluon jets are softer and broader than quark ones
(also helped by hadronization models, lecture 4).

~ T T “HH’NAo.ossi‘Hu T T

€ | pp\s=7Tev  cms det:aspb" PO T pp\s=7TeV cMs (L dt=36pb"]

25— = Datalyl<1 4 = o0l 4 = Data lyl<1 B

[ o Datatl<lyl<2 4 1 R ) o Datal<lyl<2 . 1

[ a Gluon Jets (Pythia Tune 22) e 1 [ —oa + Gluon Jets (Pythia Tune Z2) ]

[ v Quark Jets (Pythia Tune Z2) 4 ] 0.025- &, 7 Quark Jets (Pythia Tune Z2) !

0251 A 1

20— = r K ]

[ ] F, 2 ]

[ ] 002 v e, .

L ] r v . >—D—t’_¢m . ]

15— — 15 v, A, . ]

[ ] 0.015— v, . B

r ] [ Ty, L S TV ]

L - ]

1ok 1 .01 "v,v et 3

L vy g ]

L ] F A v'—D—":?:; s 1

L ] 0.005— M

5 B F 3
| . . Ll | S . . T

50 100 200 300 1000 50 100 200 300 1000

Jet P (GeVic) Jet P, (GeV/c)

Note transition g jets — q jets for increasing p; .
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Heavy flavours: the dead cone

Matrix element for eTe™ — qqg for small ;3

doggg X+ x3 _ dw ol
Oqq (1—x1)(1—x) w 03,
is modified for heavy quark Q: do
3
doggg . dw d63, ( 02, >2 massless
Taq w 033 \ 033+ m3/E}

d 62, d6?
S L EH 5 "dead cone”
w (013 + mi/Ef)

so “dead cone” for H13 < my/E;

massive
m1/E1

»013

For charm and bottom lagely filled in by their decay products.




Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

f:(x, Q%) = number density of partons i
at momentum fraction x and probing scale Q2.
Linguistics (example):

F2(X7 QQ) — Ze,?Xfi(Xa Qz)

structure function parton distributions




PDF example

1
1 T T T T T T T T T

NNPDF3.0 (NNLO)
xf(x,u2=10 GeV?)

0.9

xf(x,u2=10* GeV?)

0.8

| T ..\.\.\.\.f\,\,,

0' | Lo

10° 1072 107" 1 10° 107 107" 1
X X

Several PDF collaborations: CTEQ, MMHT, NNPDF, ...
See presentation by Thomas Cridge tomorrow




PDF evolution

Initial conditions at small Q2 unknown: nonperturbative.

Resolution dependence perturbative, by DGLAP:

DGLAP (Dokshitzer—Gribov—Lipatov—Altarelli-Parisi)

dfp(x, Q as X
— 1o P =—
d(ln Q2 Z/ )/a o a—bc <Z y)
DGLAP already introduced for (final-state) showers:

as dQ°
2 Q2

Same equation, but different context:

dPasbe = Pa%bc(z) dz

@ dP,_.pc is probability for the individual parton to branch; while

o dfy(x, Q%) describes how the ensemble of partons evolve
by the branchings of individual partons as above.




Initial-State Shower Basics

e Parton cascades in p are continuously born and recombined.
e Structure at Q is resolved at a time t ~ 1/Q before collision.
e A hard scattering at Q? probes fluctuations up to that scale.
e A hard scattering inhibits full recombination of the cascade.

e Convenient reinterpretation:

m2=0 m2=O

Q2=-m?2>0
and increasing

m2>0 m2 =0




Forwards vs. backwards evolution

Event generation could be addressed by forwards evolution:
pick a complete partonic set at low @y and evolve,

consider collisions at different Q2 and pick by o of those.
Inefficient:

© have to evolve and check for all potential collisions,
but 99.9... % inert

@ impossible (or at least very complicated) to steer the
production, e.g. of a narrow resonance (Higgs)

Backwards evolution is viable and ~equivalent alternative:
start at hard interaction and trace what happened “before”




Backwards evolution master formula

Monte Carlo approach, based on conditional probability: recast

df X, Q Qg
e @) -3 / @) 22 P, ue(2)
with t = In(Q?/A?) and z = x/x to
dfb ) Qs
= % p
WPy = =10 3 Jaz 2 2 b e

then solve for decreasing t, i.e. backwards in time,
starting at high @2 and moving towards lower,
with Sudakov form factor exp(— [ dPp).

Extra factor x'f,/xf}, relative to final-state equations.




Coherence in spacelike showers

with Q%2 = —m? = spacelike virtuality
@ kinematics only:
@> @ Q2> 5 ...
ie. Q,-2 need not even be ordered
@ coherence of leading collinear singularities:
Q2 > Q3> Q% i.e. Q% ordered
@ coherence of leading soft singularities (more messy):
E304 > E105, i.e. z104 > 0>
z< 1l Ebp~pl,~ Q3 Eba~pl,~ Q2
i.e. reduces to Q2 ordering as above
z~ 1. 04 > 6y, i.e. angular ordering of soft gluons
— reduced phase space




Evolution procedures

In Q2

implicitly
DGLAP  .-" transition

DGLAP:
: region

. ECFM

ya _.---=""GLR
—t— BEKE-"T saturation

I e e

non-perturbative (confinement)

In(1/z)
DGLAP: Dokshitzer—Gribov—Lipatov—Altarelli-Parisi

evolution towards larger Q% and (implicitly) towards smaller x
BFKL: Balitsky—Fadin—Kuraev-Lipatov

evolution towards smaller x (with small, unordered @?)
CCFM: Ciafaloni—Catani—Fiorani—-Marchesini

interpolation of DGLAP and BFKL

GLR: Gribov—Levin—Ryskin

nonlinear equation in dense-packing (saturation) region,
where partons recombine, not only branch




Initial- vs. final-state showers

Both controlled by same evolution equations

dP o dQ% (z)dz - (Sudakov)
= — — z)dz - (Su %
a—bc o Q2 a—bc
but
Final-state showers: Initial-state showers:
Q? timelike (~ m?) Q? spacelike (~ —m?)
Ez,m% E27m%
2 2
Eg, m§ )9 Eq, Qf )9
2
Frm E1,Q3
decreasing E, m?,0 decreasing E, increasing Q2,0
both daughters m?> > 0 one daughter m?> > 0, one m?> < 0
physics relatively simple physics more complicated
= "“minor” variations: = more formalisms:

Q?, shower vs. dipole, ... DGLAP, BFKL, CCFM, GLR, ...

e



Combining FSR with ISR

d

u

d

u ISR u
dress
with g FSR
radiation
d d

Separate processing of ISR and FSR misses interference
(~ colour dipoles)




Combining FSR with ISR

u u u ISR u
dress
g with g FSR
radiation
d d d d

Separate processing of ISR and FSR misses interference

(~ colour dipoles)

ISR+FSR add coherently
in regions of colour flow
and destructively else

"q ()~ 9 in “normal” shower by

azimuthal anisotropies

automatic in dipole
(by proper boosts)




Next-to-leading log showers

8oy df dw
3r 0 w
gives leading-log answer P, oc (asl?)" = a2

Resummation /exponentiation gives Sudakov Py oc exp(—asL?).
(Transverse momentum cuts both 6 and w = aJL".)

dP, = dng ~ = asl?

More careful handling of kinematics, ag running, splitting kernels
(also g — ggg), etc., give subleading corrections oc o721,

All showers have some elements of NLL, e.g. momentum
conservation, but some dedicated ongoing projects:

@ Deductor (Nagy, Soper)
see presentation by

Melissa van Beekveld
on Wednesday

@ PanScales (Salam et al.)

o Herwig 7 (Platzer et al.)
@ Vincia (Skands et al.)

e Alaric (Krauss et al.)




Matrix elements vs. parton showers

ME : Matrix Elements do do do
+ systematic expansion in oy (‘exact’) dp}’ 6%’ dm?
+  powerful for multiparton Born level
+ flexible phase space cuts
— loop calculations very tough eal
— negative cross section in collinear regions
= unpredictive jet/event structure . 7 P
— no easy match to hadronization §irtual

Q

o do _do

PS : Parton Showers 2> 92> dm?

— approximate, to LL (or NLL)
— main topology not predetermined
= inefficient for exclusive states
+  process-generic = simple multiparton
+ Sudakov form factors/resummation
= sensible jet/event structure
+ easy to match to hadronization v

:

d

S

eal x Sudakov

p?,62,m?
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Matrix elements and parton showers

Recall complementary strengths:
e ME's good for well separated jets
e PS’s good for structure inside jets

Marriage desirable! But how?

gaps in coverage?
doublecounting of radiation?
Sudakov?

NLO (+NLL) consistency?

Problems: e
[ ]
[}
[ ]
First attempt 40 years ago — Matrix Element Corrections.

Key topic of event generator development in last 30 years,
with impressive progress.

See presentations by Matthew Alexander Lim
on Thursday and Friday.




Matrix Element Corrections (MEC)

= cover full phase space with smooth transition ME/PS.

1 do(LO + g)

tt d WME =
Want to reproduce 7(LO) d(phasespace)

by shower generation with WS > WMFE 4 correction procedure

correction
wanted generated
—~ = ~ = WME
WME _ WPS
B wPps

e Exponentiate ME correction by shower Sudakov form factor:
Qrznax
Wi (@%) = WM(Q%) exp ( / WME(Q") do'2>
Q2

e Memory of shower remains in Q2 choice, i.e. “time” ordering.
o ME regularized: probability < 1 instead of divergent.
e NLO correction simple for FSR, more messy for ISR:
replace 0(LO) — o(NLO) in prefactor (POWHEG).
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Event and jet characterization

Key difference between ee™ and pp:

e ecTe” — (q is rotationally symmetric on unit sphere.

e pp has “irrelevant” beam remnants along collision axis,
requiring “true jets" to stick out in p|.

Brief history:
@ Spear (SLAC): find event axis in eTe™ — qq = Sphericity.
o Fixed-target pp experiments collision alignment = Thrust.

e PETRA (DESY): early 80'ies, e"e™ — qqg, establish g.
1) S, T; extend Sphericity and Thrust families to 3 axes.
2) clustering algorithms, e.g. JADE, Durham k.

@ SppS (CERN): cone jets in (1, ¢) space, e.g. UAL.
@ Tevatron (Fermilab): cone algorithms, increasingly messy.

@ LHC: return of clustering with new safer and faster algorithms.
Anti-k; “is" infrared safe return to UAL cone algorithm.
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[
D)
+

-jet events in e

and three

Two-




Sphericity

View as eigenvector problem, e.g. rotation axes of irregular
3D body. Here spanned up by the p; of “all” particles in event.

Sab — Z pl pl
> P

53 has three eigenvalues A1 > XAp > Az with A\; + Ao + A3 = 1.
Sphericity S = %()\2 +X3),0<S <1

S = 0: two back-to-back pencil jets, e.g. eTe™ — utu~.

S = 1: spherically symmetric distribution.

Aplanarity A = %)\3, 0<AL %

A = 0: all particles in one plane.

A=1/2: like S =1.

a,b=x,y,z

Problem: collinear unsafe!
E.g. different answer if 70 — v counted as one or two particles.




Linearized Sphericity

Collinear safe alternative, used in same way but with

p; P,
Lab Z |pl ’

i lpil

No proper name: some confusion!

ab=xy,z

Additional measures:

C = 3()\1/\2 + AMA3 + )\2/\3)

D = 27A1)2)3

used to characterize 3- and 4-jet topologies, respectively.

(Linearized) Sphericity family not normally used in pp,
since beam jets dominate structure.

Solution: set all p7 = 0 so only transverse structure studied.
Modified “2D" S = 2X; and no A.
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Thrust is computationally more demanding optimization

T = max Z [pin|
In|=1 Z ’P:‘

with n for maximum is called Thrust axis.
1/2 < T <1, with T =1 for two back-to-back pencil jets and
T = 1/2 for a spherically symmetric distribution.

2 i lpin'|

Major = max
[n/|=1,n"n=0 Zi ]p;]
i .n//
Minor = 2ilpin”| with n"n =n"n" =0
> lpil
Oblateness = Major — Minor

Major and Oblateness again useful for 3-jet structure,
Minor for 4-jet one.
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2D Sphericity at the LHC

ousE =*= Data 2010 —— PYTHIA 6 Z1 e
= -~ PYTHIA6 AMBT2B  ---- PYTHIABA2 ~ ~~~°~ :
04— —

E— YTHIA6DW - Herwig++ UE7-2
L L L L L 1 L L L

MC/Data
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Clustering algorithms — basics

Most clustering algorithms are based on sequential recombination:

@ Define a distance measure dj; between to objects i and j,
partons or particles, where dj; = 0 is closest possible.

@ Define a procedure whereby any objects / and j
can be joined into a new object k, e.g. px = p; + p;.

@ Define a stopping criterion, e.g. that all djj > diin
or that only npy, objects remain.

Start out with a list of n objects.
Calculate all djj and find pair imin and jmin With smallest value.

Remove inin and jmin from list and insert joined object k.

Iterate last two steps until the stopping criterion is met.
@ Jets = the objects that now remain.

2 — 1 joining can be viewed as undoing 1 — 2 parton branchings.
Less obvious interpretation of hadronization step.
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Clustering algorithms in eTe™

Naive thought dj; = mi but allows clustering of opposite objects.
JADE is almost like invariant mass:

2E;Ej(1 — cos ;)
E2

VIS

dj =

where E,is &~ Ecyp is visible energy.

Durham offers a theoretically preferred alternative

2min(E?, Ef)(l — cos Bj)

j = 2
Eén

which can be viewed as the (scaled) p? of the softer object
with respect to the harder one:

2(1 — cos §) = sin? @ for small § and p, = psiné.

Undoes p, -ordered branchings (to some approximation).




Clustering algorithm ambiguities

Interpretation is in the eye of the beholder:

How many jets?
Which are quarks and which gluons?
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Clustering algorithm results

Most LEP QCD physics based on jet finding, e.g.:

. R+ L= L
1 ALEPH Ecm =206 GeV L\) [ This analysis, 68% CL contour
L X S0(3),8
r i sl 1
.5 PYTHIAG.1 * QCD = SU(3)
g b HERWIG6.1
f 08 - -~ ARIADNE4.1
T / 08 - R
& L
S0(4) SU(2),5P(2)
[ o o
06
L 0.6 - i
G2
r SO(5).F4 w .
a4 L - - |
04 | 04 "o
8 & sui v":.
B O
L 02 L €6 i i
02
L 74 AN . N |4 b ALEPH-1997 OPAL-2001
L 0 s b b b e b b L g
‘ 1 125 15 175 2 225 25 275 3 325

C,/Cy
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Clustering conditions in hadron collisions

3

Most particles are at small p,, say below 1 GeV, and at small

angles with respect to beam axis, outside central tracking region.

Torbjérn Sjéstrand Introduction to Event Generators 2
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Cylindrical symmetry and rapidity

Cylindrical coordinates:

&*p dpcdp,dp,  dPpidp,
E E E

1
= pidprdpdy = Edpi dedy

with rapidity y given by

yo= LypEte 1 (Edp)? 1 (E+4p)’
2 E— Pz 2 (E + pz)(E - pz) 2 m? + pﬁ_
E+pz m_
= In =In
my E—p;

Exercise: show that dp,/E = dy by showing that dy/dp, = 1/E.

Hint: use that E = /m? + p2.




Lightcone kinematics and boosts

Introduce (lightcone) p™ = E + p, and p~ = E — p,.
Note that p*p~ = E? — p2 = m3.
Consider boost along z axis with velocity 8 and v =1/4/1 — 32

p. =v(pz + BE) p't = kp* : 1+ 8
z = th k=, —"
{E’zv(ﬂﬁpz) pr=p/k 1-5
1. pt 1  kpt
= Zihnt— =2 =y+Ink
y 2np/_ 2np—/k y+In
Yo=yi = (2t+Ink)=(a+Ink)=y2—n

Note how integration of cross section nicely separates into rapidity:

Z//dxl dXQf X1 Qz) (XQ, Q ) /d@',’j(§:X1X25)

1
//XmdX2://dey with 7 = xyx» and yzilnﬁ
X2




Pseudorapidity

If experimentalists cannot measure m they may assume m = 0.
Instead of rapidity y they then measure pseudorapidity #:

2 m2 4 p2 — p, 2 |p[—p:z pL
or
1I lp+|p|cosd 1, 14 cosf
2 |p|—|p| cos@ 2 1—cosf
B 1|n2c0529/2_ nc050/2_7|ntan7
© 2 2sin?9/2  sinf/2 2

which thus only depends on polar angle.

7 is not simple under boosts: 7, — 1] # 12 — 1.
You may even flip sign!
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The pseudorapidity dip

By analogy with dy/dp, = 1/E it follows that dn/dp, = 1/|p|.
Thus

IR T T T T T N Tt

§: SE Nep=2,p. >100 MeV, Inl <25 _E

d d d E 3 E ATLAS\s =7 TeV ]

dp _ dn/dp, _ E 5ok ;

dy  dy/dp: |p| - -
with limits 5

4= B - E

dn my g E

= oL aF == Data 2010 3

d — for p, — 0 F Z PYTHIA ATLAS AMBT1 E

y pL of --- PYTHIA ATLAS MC09 E

dn E —- PYTHIA DW 1

E -~ PYTHIA S 3

di — 1 for Pz — +o0 1; “ PHOJET E

y 1.2 = Data Uncertaintes 7

) . k. === MC/Data

so if dn/dy is flat for y ~ 0 e 1
. ] L
then dn/dn has a dip there. T e

25515 105005 1 15 2 25

n
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The R separation

Massless four-vectors can be written in cylindrical coordinates like

p = pi(coshy; cosy,sing,sinhy).
The invariant mass of two massless four-vectors is
m; = (pi+pj)° =2pipj
2p1ip1j (cosh(yi — y;) — cos(pi — ¢;))

2p1iplj (1 + %(y; —y)? -1 1(90; - %’)2))

%

2
= pLi(Ay2 + Ap%)=piipLiR?
PJ_IPJ_J( yi+ SOU) PLiPLjRj

so a circle in the (y, @) plane is a meaningful concept.
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The k, algorithm

@ Each original particle defines a cluster,
with well-defined four-momentum = (p.,y, ¥).

@ Define distance measures of all clusters i/ to the beam
and of all cluster pairs (i, /) relative to each other

dig = Pii
R2
dj = min (p1;. %)) =5

@ Find the smallest of all dijg and dj;.
a) If a dig and p1; < pimin then throw it.
b) Else if a dig then call i a jet and remove it from cluster list.
c) Else if a djj then combine i and j to a new cluster
with four-momentum p; + p;.
@ Repeat until no clusters remain.
Two key parameters R and p | min,
where p | in = 0 is allowed simplification.
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The k; family

Generalize the djg and dj; measures to

2p
dig = p1;
2

R4
. [ 2p 2
djj = min (PﬁvPLI;) ng

@ p=1is k; algorithm; preferentially clusters soft particles.

@ p =0 is Cambridge—Aachen or no-k, algorithm.

@ p = —1is anti-k algorithm; preferentially clusters around
hardest particle and give round jet catchment areas.

All three are infrared and collinear safe; i.e. the addition of a
soft particle, or the splitting of a particle into two collinear ones,
do not alter the outcome.

These, and many more jet algorithms, are available in the
FASTJET package. (Faster than naive step-by-step clustering.)
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Clustering results

p, [GeV] Cam/Aachen, R=1
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