

Introduction to Event Generators Part 2: Parton Showers and Jet Physics

Torbjörn Sjöstrand

Department of Physics Lund University

Terascale Monte Carlo School 2024, DESY

Multijets - the need for Higher Orders

 $2 \rightarrow 6$ process or $2 \rightarrow 2$ dressed up by bremsstrahlung!?

Perturbative QCD

Perturbative calculations ⇒ Matrix Elements.
Improved calculational techniques allows
* more legs (= final-state partons)
* more loops (= virtual partons not visible in final state)
but with limitations, especially for loops.

Parton Showers:

approximations to matrix element behaviour, most relevant for multiple emissions at low energies and/or angles. Main topic of this lecture.

Matching and Merging:

methods to combine matrix elements (at high scales) with parton showers (at low scales), with a consistent and smooth transition. Huge field at LHC.

In the beginning: Electrodynamics

An electrical charge, say an electron, is surrounded by a field:

In the beginning: Electrodynamics

An electrical charge, say an electron, is surrounded by a field:

For a rapidly moving charge this field can be expressed in terms of an equivalent flux of photons:

$$\mathrm{dn}_{\gamma} \approx \frac{2\alpha_{\mathrm{em}}}{\pi} \, \frac{\mathrm{d}\theta}{\theta} \, \frac{\mathrm{d}\omega}{\omega}$$

Equivalent Photon Approximation, or method of virtual quanta (e.g. Jackson) (Bohr; Fermi; Weiszäcker, Williams ~1934)

In the beginning: Electrodynamics

An electrical charge, say an electron, is surrounded by a field:

For a rapidly moving charge this field can be expressed in terms of an equivalent flux of photons:

$$\mathrm{dn}_{\gamma} \approx \frac{2\alpha_{\mathrm{em}}}{\pi} \, \frac{\mathrm{d}\theta}{\theta} \, \frac{\mathrm{d}\omega}{\omega}$$

Equivalent Photon Approximation, or method of virtual quanta (e.g. Jackson) (Bohr; Fermi; Weiszäcker, Williams ~1934)

heta: collinear divergence, saved by $m_{
m e} > 0$ in full expression.

 ω : true divergence, $n_\gamma \propto \int \mathrm{d}\omega/\omega = \infty$, but $E_\gamma \propto \int \omega \,\mathrm{d}\omega/\omega$ finite.

These are virtual photons: continuously emitted and reabsorbed.

In the beginning: Bremsstrahlung

- Initial State Radiation (ISR): part of it continues \sim in original direction of e
- Final State Radiation (FSR): the field needs to be regenerated around outgoing e, and transients are emitted ~ around outgoing e direction

Emission rate provided by equivalent photon flux in both cases. Approximate cutoffs related to timescale of process: the more violent the hard collision, the more radiation!

In the beginning: Exponentiation

Assume $\sum E_\gamma \ll E_{\rm e}$ such that energy-momentum conservation is not an issue. Then

$$\mathrm{d}\mathcal{P}_{\gamma} = \mathrm{dn}_{\gamma} pprox rac{2lpha_{\mathrm{em}}}{\pi} rac{\mathrm{d} heta}{ heta} rac{\mathrm{d}\omega}{\omega}$$

is the probability to find a photon at ω and θ , *irrespectively* of which other photons are present. Uncorrelated \Rightarrow Poissonian number distribution:

$$\mathcal{P}_i = rac{\langle n_\gamma
angle^i}{i!} e^{-\langle n_\gamma
angle}$$

with

$$\langle n_{\gamma} \rangle = \int_{\theta_{\min}}^{\theta_{\max}} \int_{\omega_{\min}}^{\omega_{\max}} dn_{\gamma} \approx \frac{2\alpha_{em}}{\pi} \ln\left(\frac{\theta_{\max}}{\theta_{\min}}\right) \ln\left(\frac{\omega_{\max}}{\omega_{\min}}\right)$$

Note that $\int d\mathcal{P}_{\gamma} = \int dn_{\gamma} > 1$ is not a problem: proper interpretation is that *many* photons are emitted.

Exponentiation: reinterpretation of $d\mathcal{P}_{\gamma}$ into Poissonian.

So how is QCD the same?

a

• A quark is surrounded by a gluon field

$$\mathrm{d}\mathcal{P}_{\mathrm{g}} = \mathrm{dn}_{\mathrm{g}} \approx \frac{8\alpha_{\mathrm{s}}}{3\pi} \frac{\mathrm{d}\theta}{\theta} \frac{\mathrm{d}\omega}{\omega}$$

i.e. only differ by substitution $\alpha_{\rm em} \rightarrow 4\alpha_{\rm s}/3$.

 An accelerated quark emits gluons with collinear and soft divergences, and as Initial and Final State Radiation.

So how is QCD different?

- QCD is non-Abelian, so a gluon is charged and is surrounded by its own field: emission rate $4\alpha_s/3 \rightarrow 3\alpha_s$, field structure more complicated, interference effects more important.
- $\alpha_s(Q^2)$ diverges for $Q^2 \rightarrow \Lambda^2_{\rm QCD}$, with $\Lambda_{\rm QCD} \sim 0.2 \, {\rm GeV} = 1 \, {\rm fm}^{-1}$.
- Confinement: gluons below $\Lambda_{\rm QCD}$ not resolved \Rightarrow de facto cutoffs.

Unclear separation between

"accelerated charge" and "emitted radiation": many possible Feynman graphs \approx histories.

The Parton-Shower Approach

 $\begin{array}{l} \text{FSR} = \text{Final-State Radiation} = \text{timelike shower} \\ Q_i^2 \sim m^2 > 0 \text{ decreasing} \\ \text{ISR} = \text{Initial-State Radiation} = \text{spacelike showers} \\ Q_i^2 \sim -m^2 > 0 \text{ increasing} \end{array}$

Why "time" like and "space" like?

Consider four-momentum conservation in a branching $a \rightarrow b c$

$$\mathbf{p}_{\perp a} = 0 \implies \mathbf{p}_{\perp c} = -\mathbf{p}_{\perp b}$$

$$p_{+} = E + p_{\mathrm{L}} \implies p_{+a} = p_{+b} + p_{+c} \quad a$$

$$p_{-} = E - p_{\mathrm{L}} \implies p_{-a} = p_{-b} + p_{-c}$$
Define $p_{+b} = z p_{+a}, \quad p_{+c} = (1 - z) p_{+a}$
Use $p_{+}p_{-} = E^{2} - p_{\mathrm{L}}^{2} = m^{2} + p_{\perp}^{2}$

$$\frac{m_a^2 + p_{\perp a}^2}{p_{+a}} = \frac{m_b^2 + p_{\perp b}^2}{z \, p_{+a}} + \frac{m_c^2 + p_{\perp c}^2}{(1 - z) \, p_{+a}}$$

$$\Rightarrow m_a^2 = \frac{m_b^2 + p_{\perp}^2}{z} + \frac{m_c^2 + p_{\perp}^2}{1 - z} = \frac{m_b^2}{z} + \frac{m_c^2}{1 - z} + \frac{p_{\perp}^2}{z(1 - z)}$$

Final-state shower: $m_b = m_c = 0 \Rightarrow m_a^2 = \frac{p_\perp^2}{z(1-z)} > 0 \Rightarrow$ timelike Initial-state shower: $m_a = m_c = 0 \Rightarrow m_b^2 = -\frac{p_\perp^2}{1-z} < 0 \Rightarrow$ spacelike A 2 \rightarrow *n* graph can be "simplified" to 2 \rightarrow 2 in different ways:

Do not doublecount: $2 \rightarrow 2 = \text{most virtual} = \text{shortest distance}$ (detailed handling of borders \Rightarrow **match & merge**)

Final-state radiation

Final-state radiation

Convenient (but arbitrary) subdivision to "split" radiation:

$$\frac{1}{(1-x_1)(1-x_2)} \frac{(1-x_1) + (1-x_2)}{x_3} = \frac{1}{(1-x_2)x_3} + \frac{1}{(1-x_1)x_3}$$

From matrix elements to parton showers

Rewrite for $x_2 \rightarrow 1$, i.e. q-g collinear limit:

$$1 - x_2 = \frac{m_{13}^2}{E_{\rm cm}^2} = \frac{Q^2}{E_{\rm cm}^2} \Rightarrow dx_2 = \frac{dQ^2}{E_{\rm cm}^2}$$

The DGLAP equations

Generalizes to

DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$\begin{split} \mathrm{d}\mathcal{P}_{a \to bc} &= \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a \to bc}(z) \,\mathrm{d}z \\ P_{\mathrm{q} \to \mathrm{qg}} &= \frac{4}{3} \frac{1+z^2}{1-z} \\ P_{\mathrm{g} \to \mathrm{qg}} &= 3 \frac{(1-z(1-z))^2}{z(1-z)} \\ P_{\mathrm{g} \to \mathrm{q}\overline{\mathrm{q}}} &= \frac{n_f}{2} \left(z^2 + (1-z)^2\right) \quad (n_f = \mathrm{no.~of~quark~flavours}) \end{split}$$

Universality: any matrix element reduces to DGLAP in collinear limit.

e.g.
$$\frac{\mathrm{d}\sigma(\mathrm{H}^{0}\to\mathrm{q}\overline{\mathrm{q}}\mathrm{g})}{\mathrm{d}\sigma(\mathrm{H}^{0}\to\mathrm{q}\overline{\mathrm{q}})} = \frac{\mathrm{d}\sigma(\mathrm{Z}^{0}\to\mathrm{q}\overline{\mathrm{q}}\mathrm{g})}{\mathrm{d}\sigma(\mathrm{Z}^{0}\to\mathrm{q}\overline{\mathrm{q}})} \quad \mathrm{in \ collinear \ limit}$$

The iterative structure

Generalizes to many consecutive emissions if strongly ordered, $Q_1^2 \gg Q_2^2 \gg Q_3^2 \dots$ (\approx time-ordered). To cover "all" of phase space use DGLAP in whole region $Q_1^2 > Q_2^2 > Q_3^2 \dots$

Need soft/collinear cuts to stay away from nonperturbative physics. Details model-dependent, but around 1 GeV scale.

Planar QCD

With $N_C = 3$ you need to reuse colours, but not if $N_C \rightarrow \infty$:

Colour lines crossed between \mathcal{M} and \mathcal{M}^{\dagger} scale like $1/N_{C}^{2}$ in $|\mathcal{M}|^{2}$, so vanish for $N_{C} \rightarrow \infty \Rightarrow$ planar QCD. Thus

$$\sigma = \sigma_{\rm LC} + \frac{1}{N_C^2} \sigma_{\rm NLC} + \frac{1}{N_C^4} \sigma_{\rm NNLC} + \cdots$$

Also showers and hadronization become simpler in this limit. Still use correct $N_c = 3$ for exact calculations, but $N_C \rightarrow \infty$ for colour connections in hard process and shower history.

The Sudakov form factor – 1

Time evolution, conservation of total probability: $\mathcal{P}(\text{no emission}) = 1 - \mathcal{P}(\text{emission}).$

Multiplicativeness, with $T_i = (i/n)T$, $0 \le i \le n$:

$$\begin{aligned} \mathcal{P}_{\rm no}(0 \leq t < T) &= \lim_{n \to \infty} \prod_{i=0}^{n-1} \mathcal{P}_{\rm no}(T_i \leq t < T_{i+1}) \\ &= \lim_{n \to \infty} \prod_{i=0}^{n-1} (1 - \mathcal{P}_{\rm em}(T_i \leq t < T_{i+1})) \\ &= \exp\left(-\lim_{n \to \infty} \sum_{i=0}^{n-1} \mathcal{P}_{\rm em}(T_i \leq t < T_{i+1})\right) \\ &= \exp\left(-\int_0^T \frac{\mathrm{d}\mathcal{P}_{\rm em}(t)}{\mathrm{d}t} \mathrm{d}t\right) \\ \implies \mathrm{d}\mathcal{P}_{\rm first}(T) &= \mathrm{d}\mathcal{P}_{\rm em}(T) \exp\left(-\int_0^T \frac{\mathrm{d}\mathcal{P}_{\rm em}(t)}{\mathrm{d}t} \mathrm{d}t\right) \\ \text{cf. radioactive decay in lecture 1.} \end{aligned}$$

Torbjörn Sjöstrand

The Sudakov form factor – 2

Expanded, with $Q \sim 1/t$ (Heisenberg)

$$d\mathcal{P}_{a \to bc} = \frac{\alpha_{s}}{2\pi} \frac{dQ^{2}}{Q^{2}} P_{a \to bc}(z) dz$$
$$\times \exp\left(-\sum_{b,c} \int_{Q^{2}}^{Q_{\max}^{2}} \frac{dQ'^{2}}{Q'^{2}} \int \frac{\alpha_{s}}{2\pi} P_{a \to bc}(z') dz'\right)$$

where the exponent is (one definition of) the Sudakov form factor

A given parton can only branch once, i.e. if it did not already do so

Note that $\sum_{b,c} \int \int d\mathcal{P}_{a\to bc} \equiv 1 \Rightarrow$ convenient for Monte Carlo ($\equiv 1$ if extended over whole phase space, else possibly nothing happens before you reach $Q_0 \approx 1$ GeV).

The Sudakov form factor – 3

Sudakov regulates singularity for first emission

... but in limit of repeated soft emissions $q \rightarrow qg$ (but no $g \rightarrow gg$) one obtains the same inclusive Q emission spectrum as for ME,

i.e. divergent ME spectrum \iff infinite number of PS emissions

More complicated in reality:

- energy-momentum conservation effects big since α_s big, so hard emissions frequent
- $\bullet\ g \to gg$ branchings leads to accelerated multiplication of partons

The ordering variable

In the evolution with

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \,\mathrm{d}z$$

 Q^2 orders the emissions (memory). If $Q^2 = m^2$ is one possible evolution variable then $Q'^2 = f(z)Q^2$ is also allowed, since

$$\left|\frac{\mathrm{d}(Q'^2,z)}{\mathrm{d}(Q^2,z)}\right| = \left|\begin{array}{cc} \frac{\partial Q'^2}{\partial Q^2} & \frac{\partial Q'^2}{\partial z} \\ \frac{\partial z}{\partial Q^2} & \frac{\partial z}{\partial z} \\ \frac{\partial z}{\partial Q^2} & \frac{\partial z}{\partial z} \end{array}\right| = \left|\begin{array}{cc} f(z) & f'(z)Q^2 \\ 0 & 1 \end{array}\right| = f(z)$$

 $\Rightarrow \mathrm{d}\mathcal{P}_{a \to bc} = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{f(z)\mathrm{d}Q^2}{f(z)Q^2} P_{a \to bc}(z) \,\mathrm{d}z = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}Q'^2}{Q'^2} P_{a \to bc}(z) \,\mathrm{d}z$

• $Q'^2 = E_a^2 \theta_{a \to bc}^2 \approx m^2/(z(1-z))$; angular-ordered shower • $Q'^2 = p_{\perp}^2 \approx m^2 z(1-z)$; transverse-momentum-ordered

Coherence

QED: Chudakov effect (mid-fifties)

 \sim cosmic ray γ atom

e⁺

e⁻

Coherence

Ordering variables in the LEP/Tevatron era

PYTHIA: $Q^2 = m^2$ HERWIG: $Q^2 \sim E^2 \theta^2$

large mass first ⇒ "hardness" ordered **coherence brute force** covers phase space ME merging simple g → qq simple **not Lorentz invariant** no stop/restart

ISR: $m^2 \rightarrow -m^2$

large angle first \Rightarrow hardness not ordered coherence inherent gaps in coverage ME merging messy $g \rightarrow q\overline{q}$ simple not Lorentz invariant no stop/restart ISR: $\theta \rightarrow \theta$

large p_{\perp} first \Rightarrow "hardness" ordered coherence inherent

covers phase space ME merging simple $g \rightarrow q\overline{q}$ messy Lorentz invariant can stop/restart ISR: more messy

The HERWIG algorithm

Basic ideas, to which much has been added over the years:

• Evolution in $Q_a^2 = E_a^2 \xi_a$ with $\xi_a \approx 1 - \cos \theta_a$, i.e.

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}(E_a^2\xi_a)}{E_a^2\xi_a} P_{a\to bc}(z) \,\mathrm{d}z = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}\xi_a}{\xi_a} P_{a\to bc}(z) \,\mathrm{d}z$$

Require ordering of consecutive ξ values, i.e. $(\xi_b)_{\max} < \xi_a$ and $(\xi_c)_{\max} < \xi_a$.

- Reconstruct masses backwards in algorithm
 m_a² = m_b² + m_c² + 2E_bE_cξ_a
 Note: ξ_a = 1 cos θ_a only holds for m_b = m_c = 0.
- Seconstruct complete kinematics of shower (forward again).
- + angular ordering built in from start
- total jet/system mass not known beforehand (\Rightarrow boosts)
- some wide-angle regions never populated, "dead zones"

Dual description of partonic state: partons connected by dipoles ⇔ dipoles stretched between partons **parton branching** ⇔ **dipole splitting**

Quark vs. gluon jets

$$rac{P_{
m g
ightarrow
m gg}}{P_{
m q
ightarrow
m qg}} pprox rac{N_c}{C_F} = rac{3}{4/3} = rac{9}{4} pprox 2$$

 \Rightarrow gluon jets are softer and broader than quark ones (also helped by hadronization models, lecture 4).

Note transition g jets \rightarrow q jets for increasing p_{\perp} .

Heavy flavours: the dead cone

Matrix element for $e^+e^- \rightarrow q\overline{q}g$ for small θ_{13}

$$\frac{\mathrm{d}\sigma_{\mathrm{q}\overline{\mathrm{q}}\mathrm{g}}}{\sigma_{\mathrm{q}\overline{\mathrm{q}}}} \propto \frac{x_1^2 + x_2^2}{\left(1 - x_1\right)\left(1 - x_2\right)} \approx \frac{\mathrm{d}\omega}{\omega} \; \frac{\mathrm{d}\theta_{13}^2}{\theta_{13}^2}$$

For charm and bottom lagely filled in by their decay products.

Parton Distribution Functions

Hadrons are composite, with time-dependent structure:

 $f_i(x, Q^2)$ = number density of partons *i* at momentum fraction x and probing scale Q^2 . Linguistics (example):

$$F_2(x, Q^2) = \sum_i e_i^2 x f_i(x, Q^2)$$

structure function parton distributions

PDF example

See presentation by Thomas Cridge tomorrow

PDF evolution

Initial conditions at small Q_0^2 unknown: nonperturbative. Resolution dependence perturbative, by DGLAP:

DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}(\ln Q^2)} = \sum_{a} \int_x^1 \frac{\mathrm{d}z}{z} f_a(y,Q^2) \frac{\alpha_{\mathrm{s}}}{2\pi} P_{a \to bc} \left(z = \frac{x}{y}\right)$$

DGLAP already introduced for (final-state) showers:

$$\mathrm{d}\mathcal{P}_{a\to bc} = \frac{\alpha_{\mathrm{s}}}{2\pi} \frac{\mathrm{d}Q^2}{Q^2} P_{a\to bc}(z) \,\mathrm{d}z$$

Same equation, but different context:

- $d\mathcal{P}_{a \rightarrow bc}$ is probability for the individual parton to branch; while
- d*f_b*(*x*, *Q*²) describes how the ensemble of partons evolve by the branchings of individual partons as above.

Initial-State Shower Basics

- \bullet Parton cascades in \boldsymbol{p} are continuously born and recombined.
- Structure at Q is resolved at a time $t \sim 1/Q$ before collision.
- A hard scattering at Q^2 probes fluctuations up to that scale.
- A hard scattering inhibits full recombination of the cascade.

• Convenient reinterpretation:

Event generation could be addressed by **forwards evolution**: pick a complete partonic set at low Q_0 and evolve, consider collisions at different Q^2 and pick by σ of those. **Inefficient:**

- have to evolve and check for all potential collisions, but 99.9...% inert
- impossible (or at least very complicated) to steer the production, e.g. of a narrow resonance (Higgs)

Backwards evolution is viable and ~equivalent alternative: start at hard interaction and trace what happened "before"

Backwards evolution master formula

Monte Carlo approach, based on conditional probability: recast

$$\frac{\mathrm{d}f_b(x,Q^2)}{\mathrm{d}t} = \sum_{a} \int_x^1 \frac{\mathrm{d}z}{z} f_a(x',Q^2) \frac{\alpha_{\mathrm{s}}}{2\pi} P_{a \to bc}(z)$$

with $t = \ln(Q^2/\Lambda^2)$ and z = x/x' to

$$\mathrm{d}\mathcal{P}_{b} = \frac{\mathrm{d}f_{b}}{f_{b}} = |\mathrm{d}t| \sum_{a} \int \mathrm{d}z \, \frac{x'f_{a}(x',t)}{xf_{b}(x,t)} \, \frac{\alpha_{\mathrm{s}}}{2\pi} \, P_{a \to bc}(z)$$

then solve for *decreasing t*, i.e. backwards in time, starting at high Q^2 and moving towards lower, with Sudakov form factor $\exp(-\int d\mathcal{P}_b)$.

Extra factor $x' f_a / x f_b$ relative to final-state equations.

Coherence in spacelike showers

i.e.
$$Q^2$$
 need not even be ordered

- coherence of leading collinear singularities: $Q_5^2 > Q_3^2 > Q_1^2$, i.e. Q^2 ordered
- coherence of leading soft singularities (more messy):

$$\begin{array}{ll} E_{3}\theta_{4} > E_{1}\theta_{2}, \text{ i.e. } z_{1}\theta_{4} > \theta_{2} \\ z \ll 1: & E_{1}\theta_{2} \approx p_{\perp 2}^{2} \approx Q_{3}^{2}, \ E_{3}\theta_{4} \approx p_{\perp 4}^{2} \approx Q_{5}^{2} \\ & \text{i.e. reduces to } Q^{2} \text{ ordering as above} \end{array}$$

 $z \approx 1$: $\theta_4 > \theta_2$, i.e. angular ordering of soft gluons \implies reduced phase space

Evolution procedures

DGLAP: Dokshitzer–Gribov–Lipatov–Altarelli–Parisi evolution towards larger Q^2 and (implicitly) towards smaller x BFKL: Balitsky–Fadin–Kuraev–Lipatov evolution towards smaller x (with small, unordered Q^2) CCFM: Ciafaloni–Catani–Fiorani–Marchesini interpolation of DGLAP and BFKL GLR: Gribov–Levin–Ryskin nonlinear equation in dense-packing (saturation) region, where partons recombine, not only branch

Initial- vs. final-state showers

Both controlled by same evolution equations

$$\mathrm{d}\mathcal{P}_{\boldsymbol{a}\to\boldsymbol{b}\boldsymbol{c}} = \frac{\alpha_{\mathrm{s}}}{2\pi} \, \frac{\mathrm{d}Q^2}{Q^2} \, \boldsymbol{P}_{\boldsymbol{a}\to\boldsymbol{b}\boldsymbol{c}}(\boldsymbol{z}) \, \mathrm{d}\boldsymbol{z} \, \cdot \, (\mathrm{Sudakov})$$

but

decreasing E, m^2, θ both daughters $m^2 \ge 0$ physics relatively simple \Rightarrow "minor" variations: Q^2 , shower vs. dipole, ... Initial-state showers: Q^2 spacelike ($\approx -m^2$) E_0, Q_0^2 E_1, Q_1^2

decreasing *E*, increasing Q^2 , θ one daughter $m^2 \ge 0$, one $m^2 < 0$ physics more complicated \Rightarrow more formalisms: DGLAP, BFKL, CCFM, GLR, ...

Combining FSR with ISR

Separate processing of ISR and FSR misses interference (\sim colour dipoles)

Combining FSR with ISR

Separate processing of ISR and FSR misses interference (\sim colour dipoles)

ISR+FSR add coherently in regions of colour flow and destructively else

"u" (g) in "normal" shower by
 SR azimuthal anisotropies

automatic in dipole (by proper boosts)

Next-to-leading log showers

$$\mathrm{d}\mathcal{P}_{\mathrm{g}} = \mathrm{dn}_{\mathrm{g}} \approx \frac{8\alpha_{\mathrm{s}}}{3\pi} \, \frac{\mathrm{d}\theta}{\theta} \, \frac{\mathrm{d}\omega}{\omega} \mapsto \alpha_{\mathrm{s}} L^2$$

gives leading-log answer $P_n \propto (\alpha_s L^2)^n = \alpha_s^n L^{2n}$. Resummation/exponentiation gives Sudakov $P_0 \propto \exp(-\alpha_s L^2)$. (Transverse momentum cuts both θ and $\omega \Rightarrow \alpha_s^n L^n$.)

More careful handling of kinematics, α_s running, splitting kernels (also $g \rightarrow ggg$), etc., give subleading corrections $\propto \alpha_s^n L^{2n-1}$. All showers have some elements of NLL, e.g. momentum conservation, but some dedicated ongoing projects:

- Deductor (Nagy, Soper)
- PanScales (Salam et al.)
- Herwig 7 (Plätzer et al.)
- Vincia (Skands et al.)
- Alaric (Krauss et al.)

see presentation by Melissa van Beekveld on Wednesday

Matrix elements vs. parton showers

+

+

+

_

_

+

+

Matrix elements and parton showers

Recall complementary strengths:

- ME's good for well separated jets
- PS's good for structure inside jets

Marriage desirable! But how?

- Problems: gaps in coverage?
 - doublecounting of radiation?
 - Sudakov?
 - NLO (+NLL) consistency?

First attempt 40 years ago — Matrix Element Corrections. Key topic of event generator development in last 30 years, with impressive progress.

See presentations by Matthew Alexander Lim on Thursday and Friday.

Matrix Element Corrections (MEC)

= cover full phase space with smooth transition ME/PS.

Want to reproduce $W^{\text{ME}} = \frac{1}{\sigma(\text{LO})} \frac{d\sigma(\text{LO} + \text{g})}{d(\text{phasespace})}$

by shower generation with $W^{\mathrm{PS}} > W^{\mathrm{ME}} +$ correction procedure

• Exponentiate ME correction by shower Sudakov form factor:

$$\mathcal{W}^{\mathrm{PS}}_{\mathrm{actual}}(Q^2) = \mathcal{W}^{\mathrm{ME}}(Q^2) \exp\left(-\int_{Q^2}^{Q^2_{\mathrm{max}}} \mathcal{W}^{\mathrm{ME}}(Q'^2) \mathrm{d}{Q'}^2
ight)$$

- Memory of shower remains in Q^2 choice, i.e. "time" ordering.
 - ME regularized: probability ≤ 1 instead of divergent.
 - NLO correction simple for FSR, more messy for ISR: replace $\sigma(LO) \rightarrow \sigma(NLO)$ in prefactor (POWHEG).

Key difference between e^+e^- and $pp\!:$

- $e^+e^- \rightarrow q\overline{q}$ is rotationally symmetric on unit sphere.
- pp has "irrelevant" beam remnants along collision axis, requiring "true jets" to stick out in p_{\perp} .

Brief history:

- Spear (SLAC): find event axis in $e^+e^- \to q\overline{q} \Rightarrow$ Sphericity.
- Fixed-target pp experiments collision alignment \Rightarrow Thrust.
- PETRA (DESY): early 80'ies, e⁺e⁻ → qqg, establish g.
 1) S, T; extend Sphericity and Thrust families to 3 axes.
 2) clustering algorithms, e.g. JADE, Durham k_⊥.
- SppS (CERN): cone jets in (η, φ) space, e.g. UA1.
- Tevatron (Fermilab): cone algorithms, increasingly messy.
- LHC: return of clustering with new safer and faster algorithms. Anti-k_⊥ "is" infrared safe return to UA1 cone algorithm.

Two- and three-jet events in $\mathrm{e}^+\mathrm{e}^-$

Sphericity

View as eigenvector problem, e.g. rotation axes of irregular 3D body. Here spanned up by the \mathbf{p}_i of "all" particles in event.

$$S^{ab} = \frac{\sum_{i} p_{i}^{a} p_{i}^{b}}{\sum_{i} p_{i}^{2}} \quad a, b = x, y, z$$

 S^{ab} has three eigenvalues $\lambda_1 \ge \lambda_2 \ge \lambda_3$ with $\lambda_1 + \lambda_2 + \lambda_3 = 1$.

- Sphericity $S = \frac{3}{2}(\lambda_2 + \lambda_3)$, $0 \le S \le 1$. S = 0: two back-to-back pencil jets, e.g. $e^+e^- \rightarrow \mu^+\mu^-$. S = 1: spherically symmetric distribution.
- Aplanarity $A = \frac{3}{2}\lambda_3$, $0 \le A \le \frac{1}{2}$. A = 0: all particles in one plane. A = 1/2: like S = 1.

Problem: collinear unsafe!

E.g. different answer if $\pi^0 \rightarrow \gamma\gamma$ counted as one or two particles.

Linearized Sphericity

Collinear safe alternative, used in same way but with

$$L^{ab} = \frac{\sum_{i} \frac{p_{i}^{a} p_{i}^{b}}{|\mathbf{p}_{i}|}}{\sum_{i} |\mathbf{p}_{i}|} \quad a, b = x, y, z$$

No proper name: some confusion!

Additional measures: $C = 3(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3)$ $D = 27\lambda_1\lambda_2\lambda_3$ used to characterize 3- and 4-jet topologies, respectively.

(Linearized) Sphericity family not normally used in pp, since beam jets dominate structure. Solution: set all $p_i^z = 0$ so only transverse structure studied. Modified "2D" $S = 2\lambda_2$ and no A.

Thrust

Thrust is computationally more demanding optimization

$$T = \max_{|\mathbf{n}|=1} \frac{\sum_{i} |\mathbf{p}_{i}\mathbf{n}|}{\sum_{i} |\mathbf{p}_{i}|}$$

with **n** for maximum is called Thrust axis. 1/2 < T < 1, with T = 1 for two back-to-back pencil jets and T = 1/2 for a spherically symmetric distribution.

Major =
$$\max_{|\mathbf{n}'|=1,\mathbf{n}'\mathbf{n}=0} \frac{\sum_{i} |\mathbf{p}_{i}\mathbf{n}'|}{\sum_{i} |\mathbf{p}_{i}|}$$

Minor =
$$\frac{\sum_{i} |\mathbf{p}_{i}\mathbf{n}''|}{\sum_{i} |\mathbf{p}_{i}|} \text{ with } \mathbf{n}''\mathbf{n} = \mathbf{n}''\mathbf{n}' = 0$$

blateness = Major – Minor

Major and Oblateness again useful for 3-jet structure, Minor for 4-jet one.

 \cap

2D Sphericity at the LHC

Competition between more $\sum p_{\perp}$ by more particles or by jets?

Clustering algorithms — basics

Most clustering algorithms are based on sequential recombination:

- Define a distance measure d_{ij} between to objects *i* and *j*, partons or particles, where $d_{ij} = 0$ is closest possible.
- Define a procedure whereby any objects *i* and *j* can be joined into a new object *k*, e.g. p_k = p_i + p_j.
- Define a stopping criterion, e.g. that all $d_{ij} > d_{\min}$ or that only n_{\min} objects remain.
- Start out with a list of *n* objects.
- Calculate all d_{ij} and find pair i_{\min} and j_{\min} with smallest value.
- Remove i_{\min} and j_{\min} from list and insert joined object k.
- Iterate last two steps until the stopping criterion is met.
- Jets = the objects that now remain.
- $2\to 1$ joining can be viewed as undoing $1\to 2$ parton branchings. Less obvious interpretation of hadronization step.

Clustering algorithms in e^+e^-

Naive thought $d_{ij} = m_{ij}^2$, but allows clustering of opposite objects. JADE is almost like invariant mass:

$$d_{ij} = \frac{2E_iE_j(1-\cos\theta_{ij})}{E_{\rm vis}^2}$$

where $E_{\rm vis} \approx E_{\rm CM}$ is visible energy.

Durham offers a theoretically preferred alternative

$$d_{ij} = rac{2\min(E_i^2, E_j^2)(1 - \cos heta_{ij})}{E_{
m CM}^2}$$

which can be viewed as the (scaled) p_{\perp}^2 of the softer object with respect to the harder one: $2(1 - \cos \theta) \approx \sin^2 \theta$ for small θ and $p_{\perp} = p \sin \theta$. Undoes p_{\perp} -ordered branchings (to some approximation).

Clustering algorithm ambiguities

Interpretation is in the eye of the beholder:

How many jets? Which are quarks and which gluons?

Clustering algorithm results

Most LEP QCD physics based on jet finding, e.g.:

Clustering conditions in hadron collisions

Most particles are at small p_{\perp} , say below 1 GeV, and at small angles with respect to beam axis, outside central tracking region.

Cylindrical symmetry and rapidity

Cylindrical coordinates:

$$\frac{\mathrm{d}^{3} p}{E} = \frac{\mathrm{d} p_{x} \,\mathrm{d} p_{y} \,\mathrm{d} p_{z}}{E} = \frac{\mathrm{d}^{2} p_{\perp} \,\mathrm{d} p_{z}}{E} = \mathrm{d}^{2} p_{\perp} \,\mathrm{d} y$$
$$= p_{\perp} \mathrm{d} p_{\perp} \,\mathrm{d} \varphi \,\mathrm{d} y = \frac{1}{2} \mathrm{d} p_{\perp}^{2} \,\mathrm{d} \varphi \,\mathrm{d} y$$

with rapidity y given by

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z} = \frac{1}{2} \ln \frac{(E + p_z)^2}{(E + p_z)(E - p_z)} = \frac{1}{2} \ln \frac{(E + p_z)^2}{m^2 + p_\perp^2}$$
$$= \ln \frac{E + p_z}{m_\perp} = \ln \frac{m_\perp}{E - p_z}$$

Exercise: show that $dp_z/E = dy$ by showing that $dy/dp_z = 1/E$. Hint: use that $E = \sqrt{m_{\perp}^2 + p_z^2}$.

Lightcone kinematics and boosts

Introduce (lightcone) $p^+ = E + p_z$ and $p^- = E - p_z$. Note that $p^+p^- = E^2 - p_z^2 = m_{\perp}^2$. Consider boost along z axis with velocity β and $\gamma = 1/\sqrt{1 - \beta^2}$

$$\begin{cases} p'_{z} = \gamma(p_{z} + \beta E) \\ E' = \gamma(E + \beta p_{z}) \end{cases} \Rightarrow \begin{cases} p'^{+} = kp^{+} \\ p'^{-} = p^{-}/k \end{cases} \text{ with } k = \sqrt{\frac{1+\beta}{1-\beta}} \end{cases}$$

$$y' = \frac{1}{2} \ln \frac{p'^+}{p'^-} = \frac{1}{2} \ln \frac{k p^+}{p^-/k} = y + \ln k$$
$$y'_2 - y'_1 = (y_2 + \ln k) - (y_1 + \ln k) = y_2 - y_1$$

Note how integration of cross section nicely separates into rapidity:

$$\sigma^{AB} = \sum_{i,j} \iint dx_1 dx_2 f_i^{(A)}(x_1, Q^2) f_j^{(B)}(x_2, Q^2) \int d\hat{\sigma}_{ij}(\hat{s} = x_1 x_2 s)$$
$$\iint dx_1 dx_2 = \iint d\tau dy \quad \text{with} \ \tau = x_1 x_2 \ \text{and} \ y = \frac{1}{2} \ln \frac{x_1}{x_2}$$

Pseudorapidity

If experimentalists cannot measure *m* they may assume m = 0. Instead of rapidity *y* they then measure pseudorapidity η :

$$y = \frac{1}{2} \ln \frac{\sqrt{m^2 + \mathbf{p}^2} + p_z}{\sqrt{m^2 + \mathbf{p}^2} - p_z} \quad \Rightarrow \quad \eta = \frac{1}{2} \ln \frac{|\mathbf{p}| + p_z}{|\mathbf{p}| - p_z} = \ln \frac{|\mathbf{p}| + p_z}{p_\perp}$$

or

$$\eta = \frac{1}{2} \ln \frac{|\mathbf{p} + |\mathbf{p}| \cos \theta}{|\mathbf{p}| - |\mathbf{p}| \cos \theta} = \frac{1}{2} \ln \frac{1 + \cos \theta}{1 - \cos \theta}$$
$$= \frac{1}{2} \ln \frac{2 \cos^2 \theta/2}{2 \sin^2 \theta/2} = \ln \frac{\cos \theta/2}{\sin \theta/2} = -\ln \tan \frac{\theta}{2}$$

which thus only depends on polar angle.

 η is **not** simple under boosts: $\eta'_2 - \eta'_1 \neq \eta_2 - \eta_1$. You may even flip sign!

The pseudorapidity dip

By analogy with $dy/dp_z = 1/E$ it follows that $d\eta/dp_z = 1/|\mathbf{p}|$. Thus

$$\frac{\mathrm{d}\eta}{\mathrm{d}y} = \frac{\mathrm{d}\eta/\mathrm{d}p_z}{\mathrm{d}y/\mathrm{d}p_z} = \frac{E}{|\mathbf{p}|} > 1$$

with limits

$$\begin{array}{rcl} \frac{\mathrm{d}\eta}{\mathrm{d}y} & \to & \frac{m_{\perp}}{p_{\perp}} \ \mathrm{for} \ p_z \to 0 \\ \frac{\mathrm{d}\eta}{\mathrm{d}y} & \to & 1 \ \mathrm{for} \ p_z \to \pm \infty \end{array}$$

so if dn/dy is flat for $y \approx 0$ then $dn/d\eta$ has a dip there.

The R separation

Massless four-vectors can be written in cylindrical coordinates like

$$p = p_{\perp}(\cosh y; \cos \varphi, \sin \varphi, \sinh y).$$

The invariant mass of two massless four-vectors is

$$\begin{split} m_{ij}^2 &= (p_i + p_j)^2 = 2p_i p_j \\ &= 2p_{\perp i} p_{\perp j} \; (\cosh(y_i - y_j) - \cos(\varphi_i - \varphi_j)) \\ &\approx 2p_{\perp i} p_{\perp j} \; \left(1 + \frac{1}{2} (y_i - y_j)^2 - (1 - \frac{1}{2} (\varphi_i - \varphi_j)^2) \right) \\ &= p_{\perp i} p_{\perp j} \; (\Delta y_{ij}^2 + \Delta \varphi_{ij}^2) = p_{\perp i} p_{\perp j} R_{ij}^2 \end{split}$$

so a circle in the (y, φ) plane is a meaningful concept.

The k_{\perp} algorithm

- Each original particle defines a cluster, with well-defined four-momentum ⇒ (p_⊥, y, φ).
- Define distance measures of all clusters *i* to the beam and of all cluster pairs (*i*, *j*) relative to each other

$$d_{iB} = p_{\perp i}^2$$
$$d_{ij} = \min\left(p_{\perp i}^2, p_{\perp j}^2\right) \frac{R_{ij}^2}{R^2}$$

- Find the smallest of all d_{iB} and d_{ij} .
 - a) If a d_{iB} and $p_{\perp i} < p_{\perp \min}$ then throw it.
 - b) Else if a d_{iB} then call *i* a jet and remove it from cluster list.
 - c) Else if a d_{ij} then combine *i* and *j* to a new cluster with four-momentum $p_i + p_j$.
- Repeat until no clusters remain.

Two key parameters *R* and $p_{\perp \min}$, where $p_{\perp \min} = 0$ is allowed simplification.

The k_{\perp} family

Generalize the d_{iB} and d_{ij} measures to

$$\begin{aligned} d_{iB} &= p_{\perp i}^{2p} \\ d_{ij} &= \min\left(p_{\perp i}^{2p}, p_{\perp j}^{2p}\right) \frac{R_{ij}^2}{R^2} \end{aligned}$$

• p = 1 is k_{\perp} algorithm; preferentially clusters soft particles.

- p = 0 is Cambridge–Aachen or no- k_{\perp} algorithm.
- p = −1 is anti-k_⊥ algorithm; preferentially clusters around hardest particle and give round jet catchment areas.

All three are infrared and collinear safe; i.e. the addition of a soft particle, or the splitting of a particle into two collinear ones, do not alter the outcome.

These, and many more jet algorithms, are available in the FASTJET package. (Faster than naive step-by-step clustering.)

Clustering results

Cam/Aachen, R=1

p, [GeV]

25

20

15

10