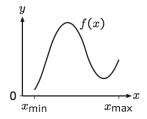

The Role of Event Generators (in the exploration of QCD)

Torbjörn Sjöstrand

Lund University, Lund, Sweden

50 Years of Quantum Chromodynamics, UCLA, 11 – 15 Sep 2023

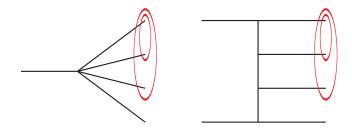

Today event generators are taken for granted:

- Kinematics-dependent cross sections for signal + background.
- Smearing and acceptance from detector imperfections.
- Effects of underlying event and pileup.

How did we arrive here? What next?

Terminology

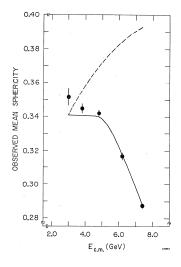
Monte Carlo: use random numbers to integrate or draw from a distribution. Converges faster than traditional integration for a multidimensional space. Standard example: flat probability in *n*-body phase space, or weighted by matrix element.


1997 CMS $\mathrm{H}^0 \to 2\ell 2j$

Event Generation: Monte Carlo simulation of a complete collision process.

Monte Carlo Event Generator (MCEG): longhand for event generator.

Detector simulation: geometry tracking and secondary collisions with detector materiel; GEANT recursively can use MCEGs.


Monte Carlo pre-QCD

- 1958: Kopylov addresses Fermi model of pions in nuclear collisions, by hand producing 200 random events.
- 1960: Kopylov; Raubold & Lynch : **M (mass) generator** for phase space, with OWL/FOWL implementation used for *s*-channel processes (mainly decays) through 70ies.
- 1968: James, "Monte Carlo Phase Space", CERN 68-15.
- 1969: Byckling & Kajantie, multiperipheral phase space for *t*-channel processes.

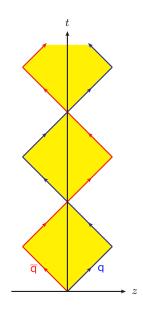
Jet Production at SPEAR (1975)

- Determine jettiness and jet axis by sphericity measure (Bjorken & Brodsky).
- Compare isotropic phase space with "jet model" where one adds $|M|^2 = \exp(-\sum_i p_{\perp i}^2/2b^2).$
- Jet model favoured at higher energies.
- With ansatz $d\sigma/d\Omega \propto 1 + \alpha \cos^2 \theta$ $\alpha_{\text{observed}} = 0.45 \pm 0.07 \Rightarrow$ $\alpha_{\text{corrected}} = 0.78 \pm 0.12.$
- Quarks produced in $e^+e^$ have spin 1/2 !

G. Hanson et al. (1975)

The Simple String

String theory early approach to hadron structure. Here 1 + 1-dimensional picture, i.e. no transverse oscillations.

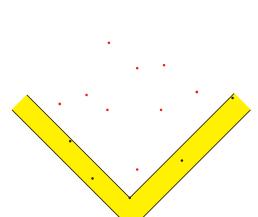

Corresponds to linear potential $V(r) \approx \kappa r$, where $\kappa \approx 1$ GeV/fm fixed from Regge trajectory slopes.

Yo-yo motion, where linearity between (t, z) and (E, p_z) gives

$$\left|\frac{\mathrm{d}E}{\mathrm{d}z}\right| = \left|\frac{\mathrm{d}p_z}{\mathrm{d}z}\right| = \left|\frac{\mathrm{d}E}{\mathrm{d}t}\right| = \left|\frac{\mathrm{d}p_z}{\mathrm{d}t}\right| = \kappa$$

 $(c = 1, m_{
m q} \approx 0)$ for a ${
m q} \overline{
m q}$ pair flying apart along the $\pm z$ axis.

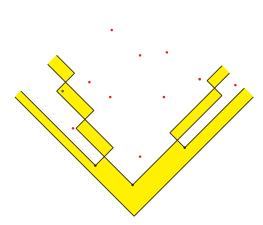
Later supported by lattice QCD.



The Artru-Mennessier Model (1974)

First (semi-)realistic hadronization model. Assumes fragmentation local, and string homogeneous. Thus constant probability per unit string area of breaking.

The Artru-Mennessier Model (1974)


First (semi-)realistic hadronization model. Assumes fragmentation local, and string homogeneous. Thus constant probability per unit string area of breaking.

But a string cannot break where it has already broken ⇒ remove vertices in forward lightcone of another

The Artru-Mennessier Model (1974)

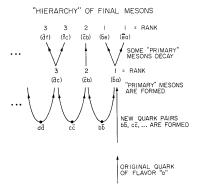
First (semi-)realistic hadronization model. Assumes fragmentation local, and string homogeneous. Thus constant probability per unit string area of breaking.

But a string cannot break where it has already broken ⇒ remove vertices in forward lightcone of another

 $\Rightarrow \text{ dampening factor} \\ \exp(-\mathcal{P}\tilde{A}), \\ \text{where } \tilde{A} \text{ is string area} \\ \text{in the backwards lightcone}$

Drawback: continuous hadron mass spectrum

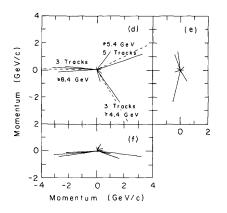
The Field–Feynman Model (1978)

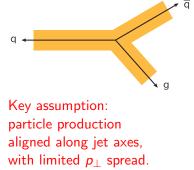

Describes single quark jet as recursive split-off of one hadron at a time w.r.t.

- new flavour $u\overline{u}, d\overline{d}$ or $s\overline{s}$,
- produced hadron (V or PS meson),
- Gaussian transverse momentum,
- fraction of remaining $E + p_z$.

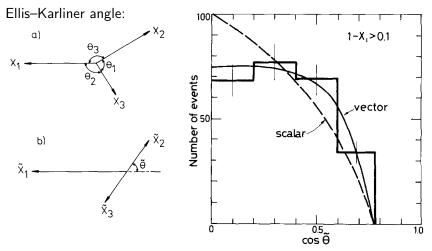
But single jet, so no E, p, flavour, colour conservation.

And no understanding of space-time picture, notably time ordering.


Conceptually less sophisticated than Artru-Mennessier, but more useful and so immensely successful and influential. Triggers development of more sophisticated event generators.

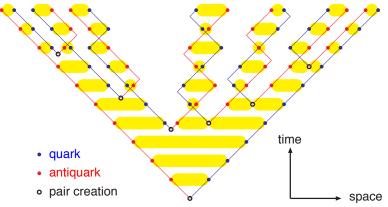


Independent Fragmentation (1979)


FF-based generators for PETRA physics:

- TASSO (internal, 1979), 2 + 3 jet MEs
- Hoyer et al. (1979), 2 + 3 jet MEs, g = q
- Ali et al. (1980), 2 + 3 + 4 jet MEs, $g = q\overline{q}$

The Gluon Spin (1980)

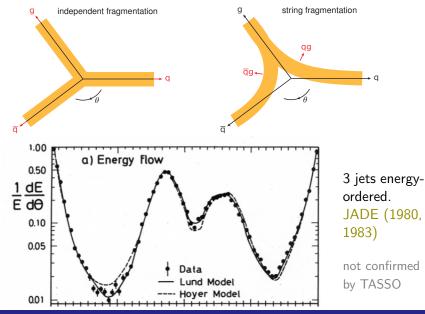

Based on comparisons with Hoyer simulation of both alternatives, taking into account 3-jet selection criteria etc.

TASSO (1980)

The Lund Model (1977 — 1982)


String breakup vertices have a spacelike separation \Rightarrow can use recursive fragmentation from ends inwards with onshell hadrons, like FF,

but give overall space-time picture similar to Artru-Mennessier.


The Lund Gluon Picture (1980)

A gluon carries one colour and one anticolour. Thus it can be viewed as a kink on the string, carrying energy and momentum:

The most characteristic feature of the Lund model.


The JADE Effect (1980)

Torbjörn Sjöstrand

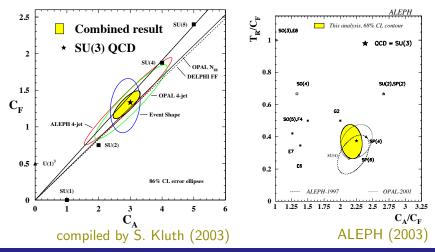
The $\alpha_{ m s}$ Confusion (\sim 1983)

CELLO (1982): $\alpha_{\rm s,Lund}/\alpha_{\rm s,Hoyer} \approx 1.5$ from 3-jet rate at LO! (*E*, **p**) not preserved when massless partons become massive jets!

Lund: $q\overline{q}$ jets more back-to-back; gluon jet ${\bm p}$ most reduced.

 $\begin{array}{l} \mbox{Hoyer: jet directions preserved;} \\ p_i \mbox{ rescaled for } \sum p_i = 0 \\ \Rightarrow \mbox{ gluon energy increased.} \end{array}$

Ali: allow overall boost \Rightarrow closer to Lund (for α_s).


Ellis, Ross, Terrano (1980): NLO $q\overline{q}g$ rate (+ LO 4-parton):

- alternative calculations eventually falsified;
- required numerical integration by user as fn. of $(x_1, x_2; y)$;
- (possibility of negative 3-jet rate someplace).

Settled down to ERT + strings from ~ 1985

Colour Factors (\sim 1991)

Angular correlations in LEP four-jet events help disentangle colour factors $C_A = N_C$, C_F and T_R . **Final confirmation of QCD!**

Torbjörn Sjöstrand

 Equivalent Photon DGLAP: Approximation (Bohr; Fermi; Weiszäcker, Williams, 1934) dP_{a→bc}

• DGLAP:

Gribov, Lipatov (1971), Altarelli, Parisi (1977), Dokshitzer (1977)

- Jet calculus: Konishi, Ukawa, Veneziano (1979)
- First shower (?): Wolfram (+ Fox, Field) (1979)
- More: Odorico (1980), Kajantie, Pietarinen (1980),

 $d\mathcal{P}_{a \to bc} = \frac{\alpha_s}{2\pi} \frac{dQ^2}{Q^2} P_{a \to bc}(z) dz$ $P_{q \to qg} = \frac{4}{3} \frac{1+z^2}{1-z}$ $P_{g \to qg} = 3 \frac{(1-z(1-z))^2}{z(1-z)}$ $P_{g \to q\overline{q}} = \frac{n_f}{2} (z^2 + (1-z)^2)$

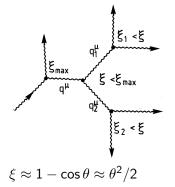
Sudakov form factor:

$$\Delta(Q_1^2,Q_2^2) = \exp\left(-\int_{Q_2^2}^{Q_1^2}\int_0^1 \mathrm{d}\mathcal{P}_{a o bc}
ight)$$

Event generation with the **veto algorithm**.

. . .

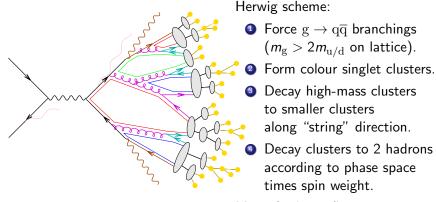
Angular Ordering (1983)


Ambiguous interpretation of evolution variable Q^2

$$\frac{\mathrm{d}M^2}{M^2}\mathrm{d}z = \frac{\mathrm{d}p_\perp^2}{p_\perp^2}\mathrm{d}z = \frac{\mathrm{d}\theta^2}{\theta^2}\mathrm{d}z$$

since $p_{\perp}^2 \approx z(1-z)M^2$ and $\theta^2 \approx M^2/(z(1-z))$.

Marchesini, Webber (1983): effects of soft-gluon destructive interference can be emulated in an angularly-ordered cascade.


Note: softer partons tend to be emitted earlier and harder ones later.

The Cluster Model (1980)

Wolfram (1980), Webber (1983), ...:

"preconfinement" \approx adjacent partons in a shower form low-mass systems (when evolved to a low cut-off scale Q_0).

Many further refinements added over the years.

String vs. Cluster

B^{0} B		
program	PYTHIA	Herwig, SHERPA
model	string	cluster
energy-momentum picture	powerful	simple
	predictive	unpredictive
parameters	few	many
flavour composition	messy	simple
	unpredictive	in-between
parameters	many	few
Even never entry of even in each nerrow turbative description		

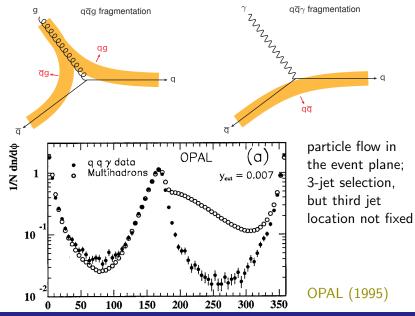
Free parameters abound in each nonperturbative description.

The Dipole Approach (1985)

Azimov, Dokshitzer, Khoze, Troyan (1985): the radiation pattern of a secondary soft gluon g_2 around a (hard) $q\overline{q}g_1$ topology is approximately

$$W(\mathbf{n}_2) \sim N_c \left(\widehat{\mathrm{qg}_1} + \widehat{\overline{\mathrm{qg}}_1} \right) - \frac{1}{N_C} \widehat{\mathrm{q}\overline{\mathrm{q}}}$$

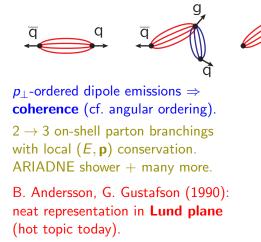
where a dipole factor

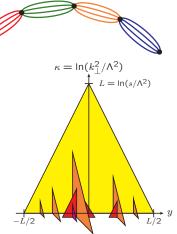

$$\widehat{ab}\sim rac{(p_ap_b)}{(p_ap_{
m g_2})(p_bp_{
m g_2})}\propto rac{(1-{\sf n}_a{\sf n}_b)}{(1-{\sf n}_a{\sf n}_2)(1-{\sf n}_b{\sf n}_2)}$$

for massless partons with $p_i = E_i(1; \mathbf{n}_i)$

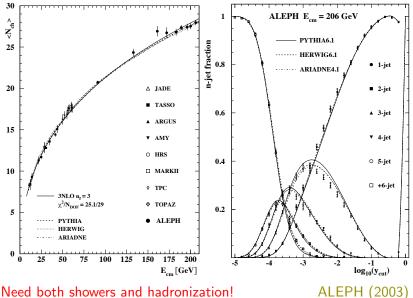
Perturbative soft-gluon emissions give the same radiation pattern as the nonperturbative string picture in the $N_C \rightarrow \infty$ limit.

Both effects contribute, but in absolute terms the perturbative contribution increases with energy and overtakes the constant string one at around $E_{\rm CM} = 100$ GeV (= LEP 1).


Photon vs. Gluon Emission (1985)

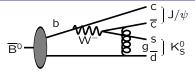


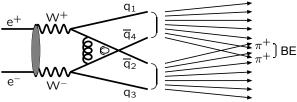
Torbjörn Sjöstrand


The Dipole Shower (1986)

G. Gustafson (1986): dual description of partonic state: partons connected by dipoles \Leftrightarrow dipoles stretched between partons **parton branching** \Leftrightarrow **dipole splitting**

Example of e^+e^- Event Properties

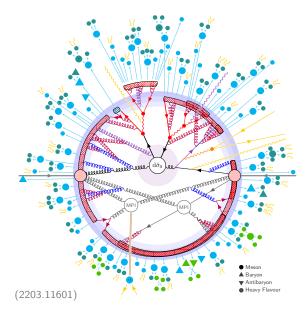



Need both showers and hadronization!

Torbjörn Sjöstrand

Interconnection

Colour rearrangement well established e.g. in B decay.



At LEP 2 search for effects in $e^+e^- \rightarrow W^+W^- \rightarrow q_1\overline{q}_2 q_3\overline{q}_4$:

- perturbative $\langle \delta M_W \rangle \lesssim 5$ MeV : negligible!
- nonperturbative $\langle \delta M_{\rm W} \rangle \sim$ 40 MeV : **favoured**; no-effect option ruled out at 2.8 σ .
- Bose-Einstein $\langle \delta M_W \rangle \lesssim 100 \text{ MeV}$: full effect ruled out (while models with $\sim 20 \text{ MeV}$ barely acceptable).

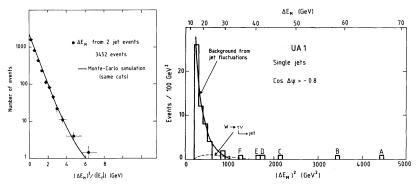
The structure of an LHC pp collision

- O Hard Interaction
- Resonance Decays
- MECs, Matching & Merging
- FSR
- ISR*
- QED
- Weak Showers
- Hard Onium
- Multiparton Interactions
- Beam Remnants*
- Strings
- Ministrings / Clusters
- Colour Reconnections
- String Interactions
- Bose-Einstein & Fermi-Dirac
- Primary Hadrons
- Secondary Hadrons
- Hadronic Reinteractions
- (*: incoming lines are crossed)

Hadron Collision Generators

- Early days mostly simple longitudinal phase space.
 Evolved over time, e.g. UA5 Monte Carlo tuned to multiplicity distribution, y and p⊥ spectra, particle composition, etc., but no jets and weak on correlations.
- 1980 ISAJET begun by F. Paige and S. Protopopescu for ISABELLE studies.
 Main generator for most pp/pp physics in the 1980'ies.
- 1982: (Wolfram), Fox, Field, Kelly ⇒ FieldAJet used to present SSC predictions, but never public (and slow)
- Other generators developed but with limited impact: COJETS/WIZJET (R. Odorico, 1984), EUROJET (B. Van Eijk, 1985), ...

Early Days: SUSY Speculations (1984)


Volume 139B, number 1,2

PHYSICS LETTERS

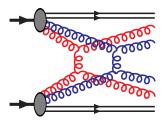
3 May 1984

EXPERIMENTAL OBSERVATION OF EVENTS WITH LARGE MISSING TRANSVERSE ENERGY ACCOMPANIED BY A JET OR A PHOTON (S) IN $p\bar{p}$ COLLISIONS AT \sqrt{s} = 540 GeV

UA1 Collaboration, CERN, Geneva, Switzerland

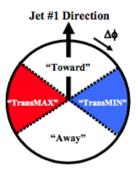
S. Ellis, R. Kleiss, J Stirling: cocktail of small SM contributions! Also UA1 1984 "40 GeV top signal" eventually went away. Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC $\rm pp$ physics studies, covering all aspects above, but with slightly different history/emphasis:

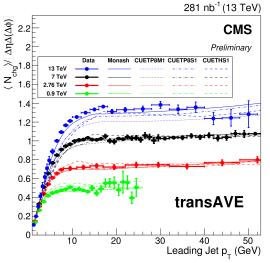
PYTHIA (successor to JETSET, begun in 1978): originated in hadronization studies; still special interest in soft physics.


Herwig (successor to EARWIG, begun in 1984): originated in coherent showers (angular ordering); cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000): has own matrix-element calculator/generator; originated with matching & merging issues.

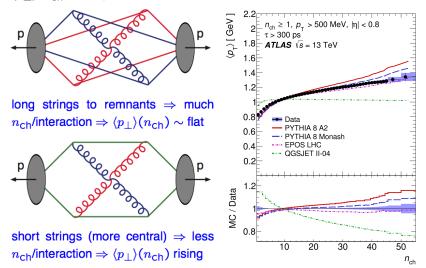
MultiParton Interactions (1985)


- Multiple cut pomerons and dual topological unitarization, and
- double (hard) parton scattering combined to picture with multiple (semi)perturbative interactions:


Colour screening from finite proton size (confinement):

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\perp}^2} \propto \frac{\alpha_{\mathrm{s}}^2(p_{\perp}^2)}{p_{\perp}^4} \rightarrow \frac{\alpha_{\mathrm{s}}^2(p_{\perp}^2)}{p_{\perp}^4} \theta\left(p_{\perp} - p_{\perp \mathrm{min}}\right) \quad \text{(simpler)}$$
or $\rightarrow \frac{\alpha_{\mathrm{s}}^2(p_{\perp 0}^2 + p_{\perp}^2)}{(p_{\perp 0}^2 + p_{\perp}^2)^2} \quad \text{(more physical)}$

At LHC $p_{\perp 0} \approx 3$ GeV and $\langle n_{\rm MPI} \rangle \approx 3-4$. Absolutely essential for minimum-bias and underlying event: average activity level and fluctuations. DPS also observed at LHC. Events with hard scale (jet, W/Z) have more underlying activity! (UA1, 1983)

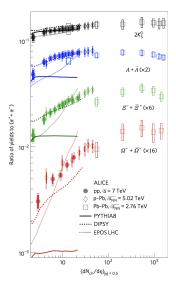


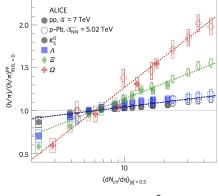
Protons are extended \Rightarrow impact-parameter. "Trigger bias" for hard interactions to occur in central collisions.

Colour Reconnection (1985)

 $\langle p_{\perp} \rangle (n_{\mathsf{Ch}})$ is very sensitive to colour flow

The Breakdown of Jet Universality

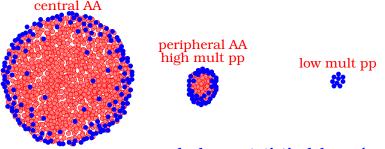

Overall generators are successful for perturbative physics. What about nonperturbative physics at the LHC?


Jet universality old concept; current interpretation: A hadronization model, once tuned to LEP data, should be directly applicable to other collisions, notably LHC pp. (AA Quark–Gluon Plasma physics excepted.)

Proven wrong at the LHC, in particular by

- strange baryon enhancement,
- charm/bottom hadron composition, and
- the ridge and collective flow.

Strangeness enhancement (2016)



(Also observed in $\rm B_s/B^0$ by LHCb.)

Signs of QGP in high-multiplicity pp collisions? If not, what else?

The Core–Corona Solution (2007)

Currently most realistic "complete" approach: mix discrete strings with continuous quark–gluon plasma.

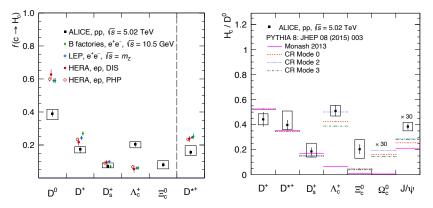
core => hydro => statistical decay ($\mu = 0$) corona => string decay

Allows smooth transition. Implemented in **EPOS** MC K. Werner, PRL 98 (2007) 152301

Qualitatively agrees with ALICE, but too steep rise.

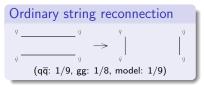
The Rope Solution (2015)

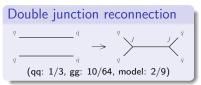
Dense environment \Rightarrow several intertwined strings \Rightarrow **rope**.

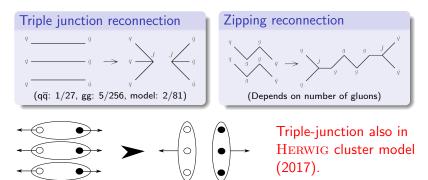

Sextet example: $3 \otimes 3 = 6 \oplus \overline{3}$ $C_2^{(6)} = \frac{5}{2}C_2^{(3)}$ At first string break $\kappa_{\text{eff}} \propto C_2^{(6)} - C_2^{(3)} \Rightarrow \kappa_{\text{eff}} = \frac{3}{2}\kappa$. At second string break $\kappa_{\text{eff}} \propto C_2^{(3)} \Rightarrow \kappa_{\text{eff}} = \kappa$. Multiple \sim parallel strings \Rightarrow random walk in colour space. Larger $\kappa_{\text{eff}} \Rightarrow$ less tunneling suppression $\exp\left(-\frac{\pi m_q^2}{\kappa_{\text{eff}}}\right)$

- more strangeness
- more baryons

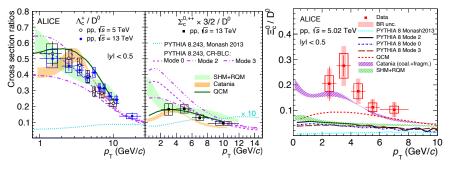
• mainly agrees with ALICE, but p/π overestimated Bierlich, Gustafson, Lönnblad, Tarasov, JHEP 1503, 148; from Biro, Nielsen, Knoll (1984), Białas, Czyz (1985), ...

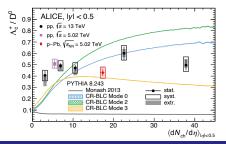

The charm baryon enhancement (2017)

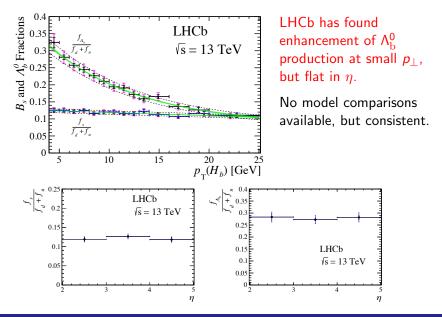

In 2017/21 ALICE found/confirmed strong enhancement of charm baryon production, relative to LEP, HERA and default PYTHIA.

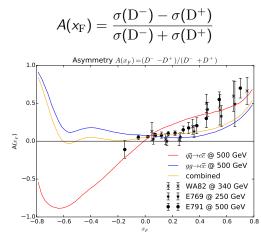


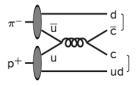
Extended Colour Reconnection Models (2015)


Christiansen, Skands: QCD-inspired CR (QCDCR):



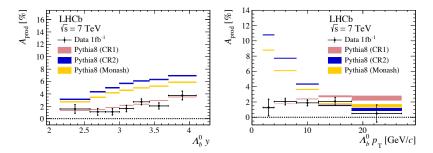

Charm baryon differential distributions (2021)


"Vacuum behaviour" recovered at larger p_{\perp} . QCDCR does well for some distributions, but less so for others, so improvements needed.


The beauty baryon enhancement (2019)

Beam drag effects (2000)

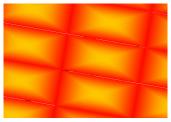
Colour flow connects hard scattering to beam remnants. Can have consequences, e.g. in π^-p :



If low-mass string e.g.: $\overline{cd} : D^-, D^{*-}$ $cud : \Lambda_c^+, \Sigma_c^+, \Sigma_c^{*+}$ \Rightarrow flavour asymmetries \overline{c} \overline{d}

Can give D "drag" to larger $x_{\rm F}$ than c quark.

Bottom asymmetries (2021)

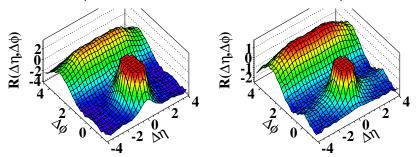

$$A(y), A(p_{\perp}) = \frac{\sigma(\Lambda_{\rm b}^0) - \sigma(\overline{\Lambda}_{\rm b}^0)}{\sigma(\Lambda_{\rm b}^0) + \sigma(\overline{\Lambda}_{\rm b}^0)}$$

CR1 = QCDCR, with no enhancement at low p_{\perp} . Enhanced $\Lambda_{\rm b}$ production at low p_{\perp} , like for $\Lambda_{\rm c}$, dilutes asymmetry? Asymmetries observed also for other charm and bottom hadrons.

Warning: fragmentation function formalisms unreliable at low p_{\perp} . May lead to incorrect conclusions about intrinsic charm.

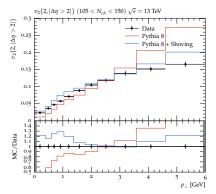
Torbjörn Sjöstrand

The Ridge Effect (2010)



(c) CMS N \geq 110, p_>0.1GeV/c

Elliptic flow in AA predicted from geometry + pressure.


Not so for pp, and yet ridge is observed at high multiplicities:

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

Shove / repulsion (2016)

Overlapping string at early times can give repulsive push, so strings get transverse motion, imparted to hadrons produced from them.

 $t = t_A$

Can give ridge and flow, in azimuth and p_{\perp} .

 $t = t_3$

Hadronic rescattering can also contribute.

Apologies

Stefan Höche will bring the story up-to-date with respect to

- perturbative higher-order calculations,
- next-to-leading-log parton showers, and
- the matching and merging of matrix elements and showers.

Even so, many aspects not covered, e.g.

- Quark-Gluon Plasma modelling of heavy ion collisions,
- \bullet HERA ep physics: rapidity gaps, photoproduction, \ldots ,
- LEP $\gamma\gamma$ physics,
- $\sigma_{\rm tot}$, ρ , diffraction,
- cosmic ray physics (cascades in the atmosphere),
- heavy flavour production, and
- QCD aspects of BSM physics,
 - e.g. hidden sectors with showers and hadronization.

Summary

With the help of event generators we have established that

- quarks have spin 1/2;
- gluons have spin 1;
- colour factors $C_A = 3$, $C_F = 4/3$, $T_R = 1/2$ as expected;
- $\alpha_{\rm s}$ runs in agreement with QCD and $\alpha_{\rm s}(M_{\rm Z}) \approx 0.12;$
- perturbative evolution is strongly influenced by coherence;
- confinement leads to hadronization along colour lines (strings or cluster chains);
- multiparton interactions and colour reconnection are needed;
- jet universality is broken at low p_{\perp} and high multiplicity.

Nonperturbative pp LHC physics not yet fully understood. Several ideas floating around, but no complete picture. (Except hybrid models like EPOS?)