DELPHI week, Uppsala 15 September 2000

Recent QCD Generator Developments

(A Subjective Selection)

Torbjörn Sjöstrand Lund University

Introduction Improved parton showers a) Final state showers b) Initial state showers Hadronization $\gamma^*\gamma^*$ physics Other topics

http://www.thep.lu.se/~torbjorn/talks/uppsala00.ps

Goodbye LEP!

... and thanks for making life exciting
4 September 1979: my first LEP workshop
13 August 1989: first LEP events
1 November 2000 (?): closedown of LEP

+ fixed target, underground detectors, ...

Complexity: $e^+e^- < ep < pp < AA$ $< \gamma p < \gamma \gamma$ $= ep = e^+e^-$

Building blocks of understanding \Rightarrow unity of observable particle physics

Event physics overview

Structure of the basic generation process:

1) Hard subprocess: $d\hat{\sigma}/d\hat{t}$, Breit-Wigners.

2) Resonance decays: includes correlations.

3) Final-stateparton showers:(or matrix elements).

4) Initial-stateparton showers:(or matrix elements).

5) Multiple parton–parton interactions.

(PYTHIA: string; HERWIG: cluster; ISAJET: independent).

7) Hadronization

8) Normal decays: hadronic, τ , charm, ...

9) QCD interconnection effects:

a) colour rearrangement (\Rightarrow rapidity gaps?);

b) Bose-Einstein.

10) The forgotten/unexpected: a chain is never stronger than its weakest link!

The rôle of exploration, be it experimental, theoretical, or phenomenological:

- to predict: too late for LEP \Rightarrow LHC/LC/...
- to explain/understand: never too late
- LEP will provide the reference for
 - final-state QCD showers
 - hadronization
 - $\gamma\gamma$ physics (?)
 - some electroweak parameters: $m_Z \dots$
 - limits of non-observation (?)

cf. PETRA: QCD vs. top/SUSY limits

Improved models and new ideas coming along \Rightarrow important to preserve physics data in easily accessible form

- HZTOOL: correct concept wrong implementation
 - \Rightarrow need clean, minimal interface

QCD Radiation off Heavy Particles

(E. Norrbin & TS, in preparation)

Shower: effective resummation of multiple-gluon-emission effects.

Evolution variable Q^2 : PYTHIA: m^2 HERWIG: $E^2\theta^2$ ARIADNE: p_{\perp}^2

z: energy/momentum sharing in branching

$$R_{3}^{\mathsf{bl}}(y_{c}) = \frac{R_{3}^{\mathsf{b}}(y_{c})}{R_{3}^{\mathsf{u}+\mathsf{d}+\mathsf{s}}(y_{c})} = \frac{\sigma(\mathsf{b}\overline{\mathsf{b}}\to\mathsf{3jets})/\sigma(\mathsf{b}\overline{\mathsf{b}})}{\sigma(\mathsf{q}\overline{\mathsf{q}}\to\mathsf{3jets})/\sigma(\mathsf{q}\overline{\mathsf{q}})}$$

 \Rightarrow ME/PS < 1, i.e. good MC starting point

restore by

 $Q_1^2 = m_i^2 - m_q^2 = (p_0 - p_2)^2 - p_1^2 = (1 - x_2)E_{CM}^2$

 $\begin{aligned} Q_j^2 &= m_j^2 - m_{j,\text{onshell}}^2 \text{ is relevant propagator;} \\ \text{generalized for } r_1 \neq r_2, r_j = m_j / E_{\text{CM}}; \\ Q_1^2 &= (1 + r_2^2 - r_1^2 - x_2) E_{\text{CM}}^2 \\ Q_2^2 &= (1 + r_1^2 - r_2^2 - x_1) E_{\text{CM}}^2 \\ \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma_{\text{ME}}}{\mathrm{d}x_1 \mathrm{d}x_2} &= \frac{(\dots)}{Q_1^2 Q_2^2} - \frac{(\dots)}{Q_1^4} - \frac{(\dots)}{Q_2^4} \end{aligned}$

Also radiation from decaying particle:

 \Rightarrow can match PS to generic $a \rightarrow bcg$ ME

- subsequent branchings: also matched to ME, with reduced energy of system
- angular ordering
- $\alpha_{s}(p_{\perp}^{2})$
- secondary heavy flavours by gluon splitting
- widths of unstable particles: for the future

Calculate for 1 \rightarrow 2 processes in SM + MSSM: $\frac{1}{\sigma(a \rightarrow bc)} \frac{d\sigma(a \rightarrow bcg)}{dx_1 dx_2}$

Depends on

- mass ratios $r_1 = m_b/m_a$ and $r_2 = m_c/m_a$
- colour and spin structure
- vector vs. axial vector etc. (γ_5) when $m_b, m_c \neq 0$

colour	spin	γ_5	example
$1 \rightarrow 3 + \overline{3}$		_	(eikonal)
$1 \rightarrow 3 + \overline{3}$	$1 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$Z^0 \to q \overline{q}$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow \frac{1}{2} + 1$	$1,\gamma_5,1\pm\gamma_5$	$t \to bW^+$
$1 \rightarrow 3 + \overline{3}$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$H^0 \to q \overline{q}$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$t \to b H^+$
$1 \rightarrow 3 + \overline{3}$	$1 \rightarrow 0 + 0$	1	$Z^0 \to \tilde{q} \overline{\tilde{q}}$
$3 \rightarrow 3 + 1$	$0 \rightarrow 0 + 1$	1	$\tilde{q} \to \tilde{q}' W^+$
$1 \rightarrow 3 + \overline{3}$	$0 \rightarrow 0 + 0$	1	${\sf H}^0 o {\widetilde{\sf q}} \overline{\widetilde{\sf q}}$
$3 \rightarrow 3 + 1$	$0 \rightarrow 0 + 0$	1	$\tilde{q} \to \tilde{q}' H^+$
$1 \rightarrow 3 + \overline{3}$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$\chi ightarrow q\overline{ ilde{q}}$
$3 \rightarrow 3 + 1$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$ ilde{q} o q \chi$
$3 \rightarrow 3 + 1$	$\frac{1}{2} \rightarrow 0 + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$t o \tilde{t} \chi$
$8 \rightarrow 3 + \overline{3}$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	$1,\gamma_5,1\pm\gamma_5$	$\tilde{g} \to q \overline{\tilde{q}}$
$3 \rightarrow 3 + 8$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$\tilde{q} \to q \tilde{g}$
$3 \rightarrow 3 + 8$	$\frac{1}{2} \to 0 + \frac{1}{2}$	$1,\gamma_5,1\pm\gamma_5$	$t \to \tilde{t} \tilde{g}$

Universal gluon radiation patterns (= no spin dependence) for small gluon energies ...

... but very process-dependent for large gluon energies ...

(and no dead cone except for spin $0 \rightarrow 0 + 0$)

... results in process-dependent jet rates

			$r_1 = r_2 = 0.2$		
colour	spin	γ_5	E_{g}	3 jet	3 jeť
$1 \rightarrow 3 + \overline{3}$	$1 ightarrow rac{1}{2} + rac{1}{2}$	1	1.000	1.000	1.000
		γ_5	1.056	1.112	1.133
	$0 \to \frac{1}{2} + \frac{1}{2}$	1	1.134	1.293	1.376
		γ_5	1.093	1.207	1.271
	$1 \rightarrow 0 + 0$	1	1.073	1.205	1.310
	$0 \rightarrow 0 + 0$	1	0.875	0.758	0.720
	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	1	0.953	0.918	0.916
		γ_5	1.057	1.132	1.179
$1 \rightarrow 3 + \overline{3}$	eikonal	_	0.802	0.695	0.659
	eikonal $+x_3^2$	—	1.201	1.518	1.670
$3 \rightarrow 3 + 1$	$rac{1}{2} ightarrow rac{1}{2} + 1$	1	0.323	0.306	0.287
		γ_5	0.356	0.365	0.349
	$\frac{1}{2} \to \frac{1}{2} + 0$	1	0.312	0.284	0.258
		γ_5	0.357	0.363	0.344
	$0 \rightarrow 0 + 1$	1	0.287	0.242	0.218
	$0 \rightarrow 0 + 0$	1	0.279	0.224	0.194
	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	1	0.359	0.379	0.375
		γ_5	0.347	0.354	0.346
	$\frac{1}{2} \to 0 + \frac{1}{2}$	1	0.294	0.257	0.239
		γ_5	0.314	0.302	0.298
$3 \rightarrow 3 + 8$	$0 \rightarrow \frac{1}{2} + \frac{1}{2}$	1	1.634	1.833	1.922
		γ_5	1.574	1.712	1.775
	$\frac{1}{2} \to 0 + \frac{1}{2}$	1	1.385	1.320	1.291
	_	γ_5	1.549	1.664	1.675
$8 \rightarrow 3 + \overline{3}$	$\frac{1}{2} \rightarrow \frac{1}{2} + 0$	1	0.561	0.493	0.445
		γ_5	0.621	0.607	0.574

$$R_4^{\mathsf{bl}}(y_c)$$

 $E_{CM} = 91 \text{ GeV}$ $m_{b} = 4.8 \text{ GeV}$

HERWIG shower developments

(B. Webber, http://home.cern.ch/webber/)

Combine ME and PS for multijet production, e.g. $e^+e^- \rightarrow 2$ jet + 3 jet + 4 jet + ...

Define jet separation e.g. by Durham p_{\perp} $y_{ij} = 2 \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})/E_{CM}^2 \approx p_{\perp}^2/E_{CM}^2$

For $y_{ij} > y_c$: exclusive multijet states by ME · Sudakov Sudakov: needs reconstructed shower history, by Durham clustering

For $y_{ij} < y_c$: further evolution by vetoed PS Veto: Durham $p_{\perp}^2 \neq$ HERWIG Q^2 \Rightarrow do evolution from $Q_{max} \sim E_{CM}$ but reject branchings that would give extra jet by Durham p_{\perp} definition

Correct to NLL = next-to-leading logarithm but not to NLO = next-to-leading order \Rightarrow further development

Photon ISR in Z⁰ production

(G. Miu & TS, PLB449 (1999) 313)

By-product of a study on W^{\pm} production in hadron colliders, attempting to combine matrix-element (ME) and parton-shower (PS) strengths.

Merging strategy: correct hardest emissions in showers so as to reproduce one order higher matrix elements.

 $2 \rightarrow 1$ process $e^+(1) + e^-(2) \rightarrow Z^0(0)$ starting point for backwards shower evolution:

2 \rightarrow 2 process e⁺(3) + e⁻(2) $\rightarrow \gamma(4) + Z^{0}(0)$:

$$\hat{s} = (p_3 + p_2)^2 = \frac{(p_1 + p_2)^2}{z} = \frac{m_Z^2}{z}$$
$$\hat{t} = (p_3 - p_4)^2 = p_1^2 = -Q^2$$
$$\hat{u} = m_Z^2 - \hat{s} - \hat{t} = Q^2 - \frac{1 - z}{z} m_Z^2$$

Relate ME and PS rates:

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{t}}\Big|_{\mathsf{ME}} = \frac{\sigma_{0}}{\hat{s}} \frac{\alpha_{\mathrm{em}}}{2\pi} \frac{\hat{t}^{2} + \hat{u}^{2} + 2m_{Z}^{2}\hat{s}}{\hat{t}\hat{u}}$$

$$\stackrel{Q^{2} \to 0}{\longrightarrow} \sigma_{0} \frac{\alpha_{\mathrm{em}}}{2\pi} \frac{1 + z^{2}}{1 - z} \frac{1}{Q^{2}} = \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}Q^{2}}\Big|_{\mathsf{PS1}}$$

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{t}}\Big|_{\mathsf{PS1}} = \frac{\sigma_{0}}{\hat{s}} \frac{\alpha_{\mathrm{em}}}{2\pi} \frac{\hat{s}^{2} + m_{Z}^{4}}{\hat{t}(\hat{t} + \hat{u})}$$

Add mirror $e^+(1) + e^-(5) \rightarrow \gamma(6) + Z^0(0)$:

$$\frac{d\hat{\sigma}}{d\hat{t}}\Big|_{\mathsf{PS}} = \frac{d\hat{\sigma}}{d\hat{t}}\Big|_{\mathsf{PS1}} + \frac{d\hat{\sigma}}{d\hat{t}}\Big|_{\mathsf{PS2}} = \frac{\sigma_0}{\hat{s}}\frac{\alpha_{\mathsf{em}}}{2\pi}\frac{\hat{s}^2 + m_Z^4}{\hat{t}\hat{u}}$$
$$R_{\mathsf{ee}\to\gamma\mathsf{Z}}(\hat{s},\hat{t}) = \frac{(d\hat{\sigma}/d\hat{t})_{\mathsf{ME}}}{(d\hat{\sigma}/d\hat{t})_{\mathsf{PS}}} = \frac{\hat{t}^2 + \hat{u}^2 + 2m_Z^2\hat{s}}{\hat{s}^2 + m_Z^4}$$
$$\frac{1}{2} < R_{\mathsf{ee}\to\gamma\mathsf{Z}}(\hat{s},\hat{t}) \le 1$$

Improve PS:

- $Q_{\max}^2 = s$, not $Q_{\max}^2 \approx m_Z^2$ (intermediate)
- MC correction by $R(\hat{s}, \hat{t})$ for first (\approx hardest) emission on each side (new)

Now default.

Hadronization

Lund string successful ...

even HERWIG adopts 'stringy' description:

• large-mass clusters split in two

 small-mass clusters decay anisotropically along 'string' direction

... but many murky issues

- perturbative \Rightarrow nonperturbative transition
- ambiguities of gluon structure
- origin of flavour composition (hadron vs. quark masses, wave functions)
- baryon production mechanism (diquark, popcorn, 'curtain' quark)
- rôle of higher resonances: tensor etc. (poorly known, nonisotropic decays, duality with string description)
- spin/polarization phenomena
- interconnection
 (colour rearrangement, Bose–Einstein)

Small-mass string \Rightarrow 'cluster', by $g \rightarrow q\overline{q}$ in shower (E. Norrbin & TS, PLB442 (1998) 407, LUTP 00-16 (hep-ph/0005110)

Improved description of when collapse occurs (mass spectrum \Leftarrow constituent quark masses)

and

1-body collapse: energy-momentum shuffling 2-body decay: smoother joining to string picture (matched anisotropic decay)

Virtual photon processes

(C. Friberg & TS, Eur. Phys. J. C13 (2000) 151, LUTP 00-29 (hep-ph/0007314), LUTP 00-31 (hep-ph/0009003))

The photon flux

$$d\sigma(ee \to eeX) = \sum_{\xi_1, \xi_2 = \top, L} \int dy_1 \, dQ_1^2 \, dy_2 \, dQ_2^2$$
$$\times f_{\gamma/e}^{\xi_1}(y_1, Q_1^2) \, f_{\gamma/e}^{\xi_2}(y_2, Q_2^2) \, d\sigma(\gamma_{\xi_1}^* \gamma_{\xi_2}^* \to X)$$

with

$$f_{\gamma/e}^{\mathsf{T}}(y,Q^2) = \frac{\alpha_{\text{em}}}{2\pi} \left(\frac{(1+(1-y)^2)}{y} \frac{1}{Q^2} - \frac{2m_{\text{e}}^2 y}{Q^4} \right)$$
$$f_{\gamma/e}^{\mathsf{L}}(y,Q^2) = \frac{\alpha_{\text{em}}}{2\pi} \frac{2(1-y)}{y} \frac{1}{Q^2}$$

Photoproduction / $\gamma\gamma$

Direct: point-like

Resolved: hadronic state

 $\gamma\gamma$: 3 × 3 = 9 combinations (+ subdivisions)

Spectrum of fluctuations $\gamma \leftrightarrow q\overline{q} \propto dk_{\perp}^2/k_{\perp}^2$ alt. $m \simeq 2k_{\perp}$; dm^2/m^2

 $\begin{array}{l} \star k_{\perp} < k_{0} \simeq 0.5 \ \text{GeV: nonperturbative } \gamma \rightarrow q\overline{q} \\ \text{hadronic physics} \Rightarrow \text{VMD} \\ & \quad (\text{Vector Meson Dominance}) \\ \text{parameterized couplings to } \rho^{0}, \, \omega, \, \phi, \, \text{J}/\psi \\ \sigma_{\text{tot}}^{\gamma \rightarrow \rho} = \mathcal{P}(\gamma \rightarrow \rho) \cdot \sigma_{\text{tot}}^{\rho} \\ \text{PDF } f_{i}^{\gamma \rightarrow \rho}(x, \mu^{2}), \, \sigma_{\text{jet}}^{\gamma \rightarrow \rho} = \dots \\ \text{beam remnants, multiple interactions, } \dots \\ \star k_{\perp} > k_{0}: \text{ perturbative } \gamma \rightarrow q\overline{q} \end{array}$

PDF calculable: anomalous part of γ but $\sigma_{tot}^{q\overline{q}}$ not \Rightarrow GVMD (Generalized VMD) geometric scaling ansatz $\sigma_{tot}^{q\overline{q}} \propto k_V^2/k_\perp^2$, $k_V \simeq m_\rho/2$ for light quarks again hadronic character: beam remnants, ...

Photon 'high- p_{\perp} ' processes

Three main 'high- p_{\perp} ' jet process classes:

1. direct×direct

2. direct × resolved , resolved = VMD or anomalous

3. resolved × resolved

 $gg \to q\overline{q}$

 $d\sigma(\gamma^*\gamma^* \to X) = \left(\int d\hat{x}_1 f_i^{\gamma^*}(\hat{x}_1, \mu^2, Q_1^2)\right)$ $\times \left(\int d\hat{x}_2 f_j^{\gamma^*}(\hat{x}_2, \mu^2, Q_2^2)\right) \int d\hat{t} \frac{d\hat{\sigma}}{d\hat{t}} (\hat{s} = \hat{x}_1 \hat{x}_2 W^2)$

Deeply Inelastic Scattering / $\gamma^*\gamma$

Virtual photon:
$$\gamma^* q \to q$$
, e.g. q in (VMD) ρ^0
 $\sigma_{\text{tot}}^{\gamma^* \rho} \simeq \frac{4\pi^2 \alpha_{\text{em}}}{Q^2} F_2^{\rho}(x, Q^2) \simeq \frac{4\pi^2 \alpha_{\text{em}}}{Q^2} \sum_{q,\overline{q}} e_q^2 xq(x, Q^2)$

but $F_2 \rightarrow 0$ for $Q^2 \rightarrow 0$ by gauge invariance, + limit doublecounting with photoproduction

$$\sigma_{\text{DIS}}^{\gamma^*\rho} \simeq \left(\frac{Q^2}{Q^2 + m_\rho^2}\right)^2 \frac{4\pi^2 \alpha_{\text{em}}}{Q^2} \sum_{\mathbf{q},\overline{\mathbf{q}}} e_{\mathbf{q}}^2 xq(x,Q^2)$$

where $q(x, Q^2)$ frozen for $Q^2 < Q_0^2$; and prefactor ensures $\sigma_{\text{DIS}} \rightarrow 0$ for $Q^2 \rightarrow 0$

$$\mathcal{O}(\alpha_{\mathsf{S}}) \mathsf{DIS} = \left\{ \begin{array}{l} \mathsf{QCDC} \ \gamma^* \mathsf{q} \to \mathsf{qg} \\ \mathsf{BGF} \ \gamma^* \mathsf{g} \to \mathsf{q\overline{q}} \end{array} \right\} = \mathsf{dir} \times \mathsf{res}$$

$$\sigma_{\text{LO DIS}}^{\gamma^*\rho} = \sigma_{\text{DIS}}^{\gamma^*\rho} - \sigma_{\text{dir}\times\text{res}}^{\gamma^*\rho} \to \sigma_{\text{DIS}}^{\gamma^*\rho} \exp\left(-\frac{\sigma_{\text{dir}\times\text{res}}^{\gamma^*\rho}}{\sigma_{\text{DIS}}^{\gamma^*\rho}}\right)$$

corresponds to Sudakov form factor

$$\gamma\gamma$$
:9combinations = (dir+VMD+GVMD)^2 $\gamma^*\gamma^*$:+ 4combinations = 2 sides×(VMD+GVMD)13!!

From Real to Virtual Photons

Direct photon: Q^2 in ME expression

Resolved photon:

total cross section $\sigma_{\rm tot}^{\gamma \rightarrow i}$ dampened by dipole

 $\left(\frac{m^2}{m^2+Q^2}\right)^2$ (fewer fluctuations, smaller size)

VMD: $m = m_{
ho}, m_{\omega}, m_{\phi}, m_{{\sf J}/\psi}$ GVMD: $m \simeq 2k_{\perp}$; in total

$$\int_{k_0^2} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \frac{k_V^2}{k_{\perp}^2} \left(\frac{4k_{\perp}^2}{4k_{\perp}^2 + Q^2} \right)^2$$

 $f_i^{\gamma^*_{\mathsf{T}}}(x,\mu^2,Q^2)$: SaS 1D (also dipole-based) $f_i^{\gamma^*_{\mathsf{L}}}(x,\mu^2,Q^2)$: simple multiplicative factor or Chýla (hep-ph/0006232)

Putting it all together, res = VMD + GVMD:

$$\begin{split} \sigma_{\text{tot}}^{\gamma^*\gamma^*}(W^2, Q_1^2, Q_2^2) &= \sigma_{\text{DIS}\times\text{res}}^{\gamma^*\gamma^*} \exp\left(-\frac{\sigma_{\text{dir}\times\text{res}}^{\gamma^*\gamma^*}}{\sigma_{\text{DIS}\times\text{res}}^{\gamma^*\gamma^*}}\right) + \sigma_{\text{dir}\times\text{res}}^{\gamma^*\gamma^*} \\ &+ \sigma_{\text{res}\times\text{DIS}}^{\gamma^*\gamma^*} \exp\left(-\frac{\sigma_{\text{res}\times\text{dir}}^{\gamma^*\gamma^*}}{\sigma_{\text{res}\times\text{DIS}}^{\gamma^*\gamma^*}}\right) + \sigma_{\text{res}\times\text{dir}}^{\gamma^*\gamma^*} \\ &+ \sigma_{\text{dir}\times\text{dir}}^{\gamma^*\gamma^*} + \left(\frac{W^2}{Q_1^2 + Q_2^2 + W^2}\right)^3 \sigma_{\text{res}\times\text{res}}^{\gamma^*\gamma^*} \end{split}$$

 $(1-x)^3$ reduces doublecounting at large x

Process composition

Energy dependence

Event properties

$W_{\gamma^*\gamma^*} = 100 \text{ GeV}$

average charged multiplicity:

probability to have a jet with $E_{\perp} > 5 \text{ GeV}$ inside a cone $R = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2} < 1$:

Effects of longitudinal photons

Program particulars

```
To access new \gamma^* flux convolution:
CALL PYINIT('cms', 'gamma/e-', 'gamma/e+', 200D0)
```

Also possible to have $\gamma^* \gamma^*$ collisions directly: CALL PYINIT('five', 'gamma', 'gamma', 100D0) with P(1,J) and P(2,J) defining momenta and virtualities (P(I,5) < 0 for spacelike ones).

Photon character regulated by MSTP(14):
= 10 : mix direct/VMD/anomalous for real photons; d×V = V×d etc. ⇒ 6 classes.
= 30 : (new default) mix dir/VMD/GVMD and DIS for virtual photons; ⇒ 13 classes.
= other numbers : individual classes.
Warning : γ*γ* → ℓ+ℓ⁻ included in dir×dir if not switched off (automatic when mixing).

MSEL = 1, CKIN(3) > 2: jets with $p_{\perp} >$ CKIN(3) MSEL = 1, CKIN(3) = 0: jet + low- p_{\perp} MSEL = 2, CKIN(3) = 0: + diffractive + elastic

Possible to specify cuts on x_i , y_i , Q_i^2 , θ_i , W^2 in CKIN(61) - CKIN(78). Phase space sampled according to $\prod_i (dQ_i^2/Q_i^2) (dx_i/x_i) d\varphi_i$ \Rightarrow full efficiency for x_i and Q_i^2 cuts.

status

Authors: TS, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, E. Norrbin

JETSET 7.4 PYTHIA 5.7 SPYTHIA

4 March 1997 : PYTHIA 6.1

Currently PYTHIA 6.152 of 17 August 2000 $\sim 51,900$ lines Fortran 77

Code, manuals, sample main programs: http://www.thep.lu.se/~torbjorn/Pythia.html

PYTHIA 6.1 main news:

- JETSET routines renamed:
 LUxxxx → PYxxxx + some more
- All real variables in DOUBLE PRECISION
- New SUSY processes and improved SUSY simulation; new PDG codes for sparticles
- New processes for Higgs, technicolour, ...
- Many improved resonance decays

- Several initial- and final-state showers matched to matrix elements
- New machinery to handle real and virtual photon fluxes and cross sections
- Newer parton distributions (but ...)
- QED radiation off an incoming muon
- Energy-dependent $p_{\perp \min}$ in multiple interactions
- Colour rearrangement options for W^+W^-
- Expanded Bose-Einstein algorithm
- New baryon production scheme (optional)
- One-dimensional histograms (GBOOK)

2–, 4– and 6–fermion standard interfaces for showers and hadronization:

CALL PY2FRM(IRAD, ITAU, ICOM)

```
CALL PY4FRM(ATOTSQ,A1SQ,A2SQ,ISTRAT,
```

&IRAD,ITAU,ICOM)

CALL PY6FRM(P12,P13,P21,P23,P31,P32,PT0P, &IRAD,ITAU,ICOM)

 $q\overline{q}gg$ and $q\overline{q}q'\overline{q}'$ QCD 4-jet standard interface for showers and hadronization:

CALL PY4JET(PMAX, IRAD, ICOM)

HERWIG status

Authors: G. Marchesini, B.R. Webber, G. Abbiendi, G. Corcella, I. Knowles, S. Moretti, K. Odagiri, P. Richardson, M. Seymour, L. Stanco.

Currently HERWIG 6.1 of 16 December 1999 \sim 32,000 lines Fortran 77

Code, manuals, related programs: http://hepwww.rl.ac.uk/theory/seymour/herwig/ 6.1 release notes: hep-ph/9912396

- SUSY production and decay (in hadron collisions) including *R*-parity violation
- matrix element corrections to top decay (and W/Z production in hadron collisions)
- $e^+e^- \rightarrow 4$ jets matrix element option
- new soft underlying event options
- new particles and updated particle data
- enhanced nonisotropic decay of clusters
- beamstrahlung (interface to CIRCE)

HERWIG 6.2 will follow soon, including e.g. full simulation of MSSM Higgs physics.

Subprocess survey

Process	PYTH	HERW	ISAJ
QCD & related			
Soft QCD	*	*	*
Hard QCD	*	*	*
Heavy flavour	*	*	*
Top threshold		—	—
$\gamma\gamma$ physics	*	*	
DIS	*	*	
$\gamma^*\gamma^*$ physics	*	(*)	
Electroweak SM			
Single $\gamma^*/Z^0/W^\pm$	*	*	*
$(\gamma/\gamma^*/Z^0/W^{\pm}/f/g)^2$	*	*	*
Light SM Higgs	*	*	*
Heavy SM Higgs	(*)	*	*
SUSY BSM			
$h^0/H^0/A^0/H^{\pm}$	*	*	*
SUSY	*	*	*
RSUSY		*	
Other BSM			
Technicolor	*	_	*
New gauge bosons	*	_	
Compositeness	*	_	
Leptoquarks	*		
H $^{\pm\pm}$ (from LR-sym.)	*	—	
Extra dimensions		(*)	(*)

 \star = yes, (\star) = partial/in progress, —= no

On to C++

(L. Lönnblad, CPC 118 (1999) 213;M. Bertini, L. Lönnblad & TS, LUTP 00-23 (hep-ph/0006152);input to leif@thep.lu.se)

Why Fortran \rightarrow C++?

- SLAC \rightarrow , FNAL \rightarrow , CERN \rightarrow LHC era.
- Industrial standard.
- Educational and professional continuity for students.
- Better to program for experts.
- User-friendy interfaces for the rest of us.

PYTHIA 7 milestones:

- January 1998: project formally started.
- June 2000: "proof of concept" version, with generic event generation machinery, some processes and string fragmentation.
- 2001–2002: useful version (?), but limited in scope.
- ??: more and better than current PYTHIA.

HERWIG++ progress:PPARC funds 2 dedicated "postdocs",3-year work recently started.

Summary

* Renewed interest in shower evolution

- mass effects
- process dependence (spin, colour, ...)
- multijet composition & topologies

Needed for future physics @ LHC/LC

 \Rightarrow LEP data needed for calibration

* Hadronization

- strings best first approximation
- slow but steady progress
- \Rightarrow LEP data needed as inspiration & reference

 $\star~\gamma^*\gamma^*$ physics

- not for the weak of heart
- new 'complete' framework
- ... but still at level of 'strawman'
- \Rightarrow LEP will provide important tests

* Plea:

plan for easy comparison with final QCD data \Rightarrow will keep DELPHI alive in the LHC/LC era!