MultiDimesional fitting.
More...
#include <yat/regression/MultiDimensionalWeighted.h>
double theplu::yat::regression::MultiDimensionalWeighted::chisq |
( |
void |
| ) |
const |
- Returns
- sum of squared residuals
- See Also
- gsl_multifit_wlinear
- Exceptions
-
A | GSL_error exception is thrown if memory allocation fails or the underlying GSL calls fails (usually matrix dimension errors). |
const utility::Vector& theplu::yat::regression::MultiDimensionalWeighted::fit_parameters |
( |
void |
| ) |
const |
- Returns
- parameters of fitted model
double theplu::yat::regression::MultiDimensionalWeighted::predict |
( |
const utility::VectorBase & |
x | ) |
const |
- Returns
- value in x according to fitted model
double theplu::yat::regression::MultiDimensionalWeighted::prediction_error2 |
( |
const utility::VectorBase & |
x, |
|
|
const double |
w = 1 |
|
) |
| const |
- Returns
- expected squared prediction error for a new data point in x
double theplu::yat::regression::MultiDimensionalWeighted::s2 |
( |
const double |
w = 1.0 | ) |
const |
- Returns
- variance of residuals
double theplu::yat::regression::MultiDimensionalWeighted::standard_error2 |
( |
const utility::VectorBase & |
x | ) |
const |
- Returns
- error of model value in x
The documentation for this class was generated from the following file: